ancient archipelagoes of Europe and of the United States. We do not make due allowance for the enormous intervals of time which have probably elapsed between our consecutive formations—longer perhaps in most cases than the time required for the accumulation of each formation. These intervals will have given time for the multiplication of species from some one or some few parent-forms; and in the succeeding formation such species will appear as if suddenly created.

I may here recall a remark formerly made-namely, that it might require a long succession of ages to adapt an organism to some new and peculiar line of life; for instance, to fly through the air; but that when this had been effected, and a few species had thus acquired a great advantage over other organisms, a comparatively short time would be necessary to produce many divergent forms, which would be able to spread rapidly and widely

throughout the world.

I will now give a few examples to illustrate these remarks, and to show how liable we are to error in supposing that whole groups of species have suddenly been produced. I may recall the well-known fact that in geological treatises, published not many years ago, the great class of mammals was. always spoken of as having abruptly come in at the commencement of the tertiary series. And now one of the richest known accumulations of fossil mammals, for its thickness, belongs to the middle of the secondary series; and one true mammal has been discovered in the new red sandstone at nearly the commencement of this great series. Cuvier used to urge that no monkey occurred in any tertiary stratum; but now extinct species have been discovered in India, South America, and in Europe even as far back as the eocene stage. Had it not been for the rare accident of the preservation of footsteps in the new red sandstone of the United States, who would have ventured to suppose that, besides reptiles, no less than at least thirty kinds of birds, some of gigantic size, existed during that period? Not a fragment of bone has been discovered in these beds. Notwithstanding that the number of joints shown in the fossil impressions correspond with the number in the several toes of living birds' feet, some authors doubt whether the animals which left the impressions were really birds. Until quite recently these authors might have maintained, and some have maintained, that the whole class of birds came suddenly into existence during an early tertiary period; but now we know, on the authority of Professor Owen (as may be seen in Lyell's Manual), that a bird certainly lived during the deposi-

tion of the upper greensand.

I may give another instance, which, from having passed under my own eyes, has much struck me. In a memoir on Fossil Sessile Cirripedes, I have stated that from the number of existing and extinct tertiary species; from the extraordinary abundance of the individuals of many species all over the world, from the Arctic regions to the equator, inhabiting various zones of depths from the upper tidal limits to 50 fathoms; from the perfect manner in which specimens are preserved in the oldest tertiary beds; from the ease with which even a fragment of a valve can be recognised; from all these circumstances, I inferred that, had sessile cirripedes existed during the secondary periods, they would certainly have been preserved and discovered; and as not one species had then been discovered in beds of this age, I concluded that this great group had been suddenly developed at the commencement of the tertiary series. This was a sore trouble to me, adding as I thought one more instance of the abrupt appearance of a great group of species. But my work had hardly been published when a skilful palæontologist, M. Bosquet, sent me a drawing of a perfect specimen of an unmistakable sessile cirripede, which he had himself extracted from the chalk of Belgium. And, as if to make the case as striking as possible, this sessile cirripede was a Chthamalus, a very common, large, and ubiquitous genus, of which not one specimen has as yet been found even in any tertiary stratum. Hence we now positively know that sessile cirripedes existed during the secondary period; and these cirripedes might have been the progenitors of our many tertiary and existing species.

The case most frequently insisted on by palæontologists, of the apparently sudden appearance of a whole group of species, is that of the teleostean fishes, low down in the Chalk period. This group includes the large majority of existing species. Lately, Professor Pictet has carried their existence one sub-stage further back; and some palæontologists believe that certain much older fishes, of which the affinities are as yet imperfectly known, are really teleostean. Assuming, however, that the whole of them did appear, as Agassiz believes, at the commencement of the chalk formation, the fact

would certainly be highly remarkable; but I cannot see that it would be an insuperable difficulty on my theory, unless it could likewise be shown that the species of this group appeared suddenly and simultaneously throughout the world at this same period. It is almost superfluous to remark that hardly any fossil-fish are known from south of the equator; and by running through Pictet's Palæontology it will be seen that very few species are known from several formations in Europe. Some few families of fish now have a confined range; the teleostean fish might formerly have had a similarly confined range, and, after having been largely developed in some one sea, might have spread widely. Nor have we any right to suppose that the seas of the world have always been so freely open from south to north as they are at present. Even at this day, if the Malay Archipelago were converted into land, the tropical parts of the Indian Ocean would form a large and perfectly enclosed basin, in which any great group of marine animals might be multiplied; and here they would remain confined until some of the species became adapted to a cooler climate, and were enabled to double the southern capes of Africa or Australia, and thus reach other and distant seas.

From these and similar considerations, but chiefly from our ignorance of the geology of other countries beyond the confines of Europe and the United States, and from the revolution in our palæontological ideas on many points, which the discoveries of even the last dozen years have effected, it seems to me to be about as rash in us to dogmatise on the succession of organic beings throughout the world as it would be for a naturalist to land for five minutes on some one barren point in Australia, and then to discuss the number and range of its productions.

On the sudden appearance of groups of Allied Species in the lowest known fossiliferous strata.—There is another and allied difficulty which is much graver. I allude to the manner in which numbers of species of the same group suddenly appear in the lowest known fossiliferous rocks. Most of the arguments which have convinced me that all the existing species of the same group have descended from one progenitor apply with nearly equal force to the earliest known species. For instance, I cannot doubt that all the Silurian trilobites have descended from some one crustacean,

which must, have lived long before the Silurian age, and which probably differed greatly from any known animal. Some of the most ancient Silurian animals, as the Nautilus, Lingula, etc., do not differ much from living species; and it cannot on my theory be supposed that these old species were the progenitors of all the species of the orders to which they belong, for they do not present characters in any degree intermediate between them. If, moreover, they had been the progenitors of these orders, they would almost certainly have been long ago supplanted and exterminated by their numerous and improved descendants.

Consequently, if my theory be true, it is indisputable that before the lowest Silurian stratum was deposited, long periods elapsed, as long as, or probably far longer than, the whole interval from the Silurian age to the present day; and that during these vast, yet quite unknown, periods of time the world swarmed with living creatures.

To the question, why we do not find records of these vast primordial periods, I can give no satisfactory answer. Several of the most eminent geologists, with Sir R. Murchison at their head, are convinced that we see in the organic remains of the lowest Silurian stratum the dawn of life on this planet. Other highly competent judges, as Lyell and the late E. Forbes, dispute this conclusion. We should not forget that only a small portion of the world is known with accuracy. M. Barrande has lately added another and lower stage to the Silurian system, abounding with new and peculiar species. Traces of life have been detected in the Longmynd beds, beneath Barrande's so-called primordial zone. The presence of phosphatic nodules and bituminous matter in some of the lowest azoic rocks probably indicates the former existence of life at these periods. But the difficulty of understanding the absence of vast piles of fossiliferous strata, which on my theory no doubt were somewhere accumulated before the Silurian epoch, is very great. If these most ancient beds had been wholly worn away by denudation, or obliterated by metamorphic action, we ought to find only small remnants of the formations next succeeding them in age, and these ought to be very generally in a metamorphosed condition. But the descriptions which we now possess of the Silurian deposits over immense territories in Russia and in North America do not support the view, that the older a formation is, the more

it has always suffered the extremity of

denudation and metamorphism.

The case at present must remain inexplicable; and may be truly urged as a valid argument against the views here entertained. To show that it may hereafter receive some explanation, I will give the following hypothesis. From the nature of the organic remains which do not appear to have inhabited profound depths, in the several formations of Europe and of the United States, and from the amount of sediment, miles in thickness, of which the formations are composed, we may infer that from first to last large islands or tracts of land, whence the sediment was derived, occurred in the neighbourhood of the existing continents of Europe and North America. But we do not know what was the state of things in the intervals between the successive formations; whether Europe and the United States during these intervals existed as dry land, or as a submarine surface near land, on which sediment was not deposited, or as the bed of an open and unfathomable sea.

Looking to the existing oceans, which are thrice as extensive as the land, we see them studded with many islands; but not one oceanic island is as yet known to afford even a remnant of any palæozoic or secondary formation. Hence we may perhaps infer that during the palæozoic and secondary periods neither continents nor continental islands existed where our oceans now extend; for had they existed there, palæozoic and secondary formations would in all probability have been accumulated from sediment derived from their wear and tear, and would have been at least partially upheaved by the oscillations of level, which we may fairly conclude must have intervened during these enormously long periods. If, then, we may infer anything from these facts, we may infer that where our oceans now extend oceans have extended from the remotest period of which we have any record; and, on the other hand, that where continents now exist large tracts of land have existed, subjected no doubt to great oscillations of level, since the earliest Silurian period. The coloured map appended to my volume on Coral Reefs led me to conclude that the great oceans are still mainly areas of subsidence, the great archipelagoes still areas of oscillations of level, and the continents areas of elevation. But have we any right to assume that things have thus remained from the beginning of this world? Our

continents seem to have been formed by a preponderance, during many oscillations of level, of the force of elevation; but may not the areas of preponderant movement have changed in the lapse of ages? At a period immeasurably antecedent to the Silurian epoch continents may have existed where oceans are now spread out, and clear and open oceans may have existed where our continents now stand. Nor should we be justified in assuming that if, for instance, the bed of the Pacific Ocean were now converted into a continent, we should there find formations older than the Silurian strata, supposing such to have been formerly deposited; for it might well happen that strata which had subsided some miles nearer to the centre of the earth, and which had been pressed on by an enormous weight of superincumbent water, might have undergone far more metamorphic action than strata which have always remained nearer to the surface. The immense areas in some parts of the world, for instance in South America, of bare metamorphic rocks, which must have been heated under great pressure, have always seemed to me to require some special explanation; and we may perhaps believe that we see in these large areas the many formations long anterior to the Silurian epoch in a completely metamorphosed condition.

The several difficulties here discussed namely, our not finding in the successive formations infinitely numerous transitional links between the many species which now exist or have existed; the sudden manner in which whole groups of species appear in our European formations; the almost entire absence, as at present known, of fossiliferous formations beneath the Silurian strata, are all undoubtedly of the gravest nature. We see this in the plainest manner by the fact that all the most eminent palæontologists-namely, Cuvier, Agassiz, Barrande, Falconer, E. Forbes, etc., and all our greatest geologists, as Lyell, Murchison, Sedgwick, etc., have unanimously, often vehemently, maintained the immutability of species. But I have reason to believe that one great authority, Sir Charles Lyell, from further reflection entertains grave doubts on this subject. I feel how rash it is to differ from these authorities, to whom, with others, we owe all our knowledge. Those who think the natural geological record in any degree perfect, and who do not attach much

weight to the facts and arguments of other kinds given in this volume, will undoubtedly at once reject my theory. For my part, following out Lyell's metaphor, I look at the natural geological record as a history of the world imperfectly kept, and written in a changing dialect; of this history we possess the last volume alone, relating only to two or three countries. Of this volume only here and there a short chapter has been preserved; and of each

page, only here and there a few lines. Each word of the slowly-changing language in which the history is supposed to be written, being more or less different in the interrupted succession of chapters, may represent the apparently abruptly-changed forms of life, entombed in our consecutive, but widely separated, formations. On this view, the difficulties above discussed are greatly diminished, or even disappear.

CHAPTER X.

the property of the last transfer transfer that the property of the property o

constituted and the second of the second of

The property of the property o

DESIGNATE AND REPORTED AND ADDRESS OF A PROPERTY OF A STREET AND ADDRESS ASSESSMENT OF A PROPERTY OF

ON THE GEOLOGICAL SUCCESSION OF ORGANIC BEINGS

On the slow and successive appearance of new species—On their different rates of change—Species once lost do not reappear—Groups of species follow the same general rules in their appearance and disappearance as do single species—On Extinction—On simultaneous changes in the forms of life throughout the world—On the affinities of extinct species to each other and to living species—On the state of development of ancient forms—On the succession of the same types within the same areas—Summary of preceding and present chapters.

LET us now see whether the several facts and rules relating to the geological succession of organic beings better accord with the common view of the immutability of species, or with that of their slow and gradual modification, through descent and natural selection.

New species have appeared very slowly, one after another, both on the land and in the waters. Lyell has shown that it is hardly possible to resist the evidence on this head in the case of the several tertiary stages; and every year tends to fill up the blanks between them, and to make the percentage system of lost and new forms more gradual. In some of the most recent beds, though undoubtedly of high antiquity if measured by years, only one or two species are lost forms, and only one or two are new forms, having here appeared for the first time, either locally, or, as far as

we know, on the face of the earth. If we may trust the observations of Philippi in Sicily, the successive changes in the marine inhabitants of that island have been many and most gradual. The secondary formations are more broken; but, as Bronn has remarked, neither the appearance nor disappearance of their many now extinct species has been simultaneous in each separate formation.

Species of different genera and classes have not changed at the same rate, or in the same degree. In the oldest tertiary beds a few living shells may still be found in the midst of a multitude of extinct Falconer has given a striking instance of a similar fact in an existing crocodile associated with many strange and lost mammals and reptiles in the sub-Himalayan deposits. The Silurian Lingula differs but little from the living species of this genus; whereas most of the other Silurian Molluscs and all the Crustaceans have changed greatly. The productions of the land seem to change at a quicker rate than those of the sea, of which a striking instance has lately been observed in Switzerland. There is some reason to believe that organisms, considered high in the scale of nature, change more quickly than those that are low, though there are exceptions to this rule. The amount of organic change, as Pictet has remarked, does not strictly correspond with the

succession of our geological formations; so that between each two consecutive formations the forms of life have seldom changed in exactly the same degree. Yet; if we compare any but the most closely-related formations, all the species will be found to have undergone some change. When a species has once disappeared from the face of the earth, we have reason to believe that the same identical form never reappears. The strongest apparent exception to this latter rule is that of the so-called "colonies" of M. Barrande, which intrude for a period in the midst of an older formation, and then allow the pre-existing fauna to re-appear; but Lyell's explanationnamely, that it is a case of temporary migration from a distinct geographical province—seems to me satisfactory.

These several facts accord well with my theory. I believe in no fixed law of development causing all the inhabitants of a country to change abruptly, or simultaneously, or to an equal degree. process of modification must be extremely slow. The variability of each species is quite independent of that of all others. Whether such variability be taken advantage of by natural selection, and whether the variations be accumulated to a greater or lesser amount, thus causing a greater or lesser amount of modification in the varying species, depends on many complex contingencies—on the variability being of a beneficial nature, on the power of intercrossing, on the rate of breeding, on the slowly changing physical conditions of the country, and more especially on the nature of the other inhabitants with which the varying species comes into competition. Hence it is by no means surprising that one species should retain the same identical form much longer than others; or, if changing, that it should change less. We see the same fact in geographical distribution; for instance, in the land-shells and coleopterous insects of Madeira having come to differ considerably from their nearest allies on the continent of Europe, whereas the marine shells and birds have remained unaltered. We can perhaps understand the apparently quicker rate of change in terrestrial and in more highlyorganised productions compared with marine and lower productions, by the more complex relations of the higher beings to their organic and inorganic conditions of life, as explained in a former chapter. When many of the inhabitants of a country have become modified and improved, we can understand, on the principle of competition, and on that of the many all-important relations of organism to organism, that any form which does not become in some degree modified and improved will be liable to be exterminated. Hence we can see why all the species in the same region do at last, if we look to wide enough intervals of time, become modified; for those which do not change will become extinct.

In members of the same class the average amount of change, during long and equal periods of time, may, perhaps, be nearly the same; but as the accumulation of long-enduring fossiliferous formations depends on great masses of sediment having been deposited on areas while subsiding, our formations have been almost necessarily accumulated at wide and irregularly intermittent intervals; consequently, the amount of organic change exhibited by the fossils embedded in consecutive formations is not equal. Each formation, on this view, does not mark a new and complete act of creation, but only an occasional scene, taken almost at hazard, in a slowly changing drama.

We can clearly understand why a species when once lost should never reappear, even if the very same conditions of life, organic and inorganic, should recur. For though the offspring of one species might be adapted (and no doubt this has occurred in innumerable instances) to fill the exact place of another species in the economy of nature, and thus supplant it, yet the two forms-the old and the new-would not be identically the same; for both would almost certainly inherit different characters from their distinct progenitors. For instance, it is just possible, if our fantail-pigeons were all destroyed, that fanciers, by striving during long ages for the same object, might make a new breed hardly distinguishable from our present fantail; but if the parent rock-pigeon were also destroyed, and in nature we have every reason to believe that the parent-form will generally be supplanted and exterminated by its improved offspring, it is quite incredible that a fantail, identical with the existing breed, could be raised from any other species of pigeon, or even from the other well-established races of the domestic pigeon, for the newlyformed fantail would be almost sure to inherit from its new progenitor some slight characteristic differences.

Groups of species—that is, genera and families—follow the same general rules in

their appearance and disappearance as do single species, changing more or less quickly, and in a greater or lesser degree. A group does not reappear after it has once disappeared; or its existence, as long as it lasts, is continuous. I am aware that there are some apparent exceptions to this rule, but the exceptions are surprisingly few—so few that E. Forbes, Pictet, and Woodward (though all strongly opposed to such views as I maintain) admit its truth; and the rule strictly accords with my theory. For, as all the species of the same group have descended from some one species, it is clear that as long as any species of the group have appeared in the long succession of ages, so long must its members have continuously existed, in order to have generated either new and modified or the same old and unmodified forms. Species of the genus Lingula, for instance, must have continuously existed by an unbroken succession of generations, from the lowest Silurian

stratum to the present day.

We have seen in the last chapter that the species of a group sometimes falsely appear to have come in abruptly; and I have attempted to give an explanation of this fact, which, if true, would have been fatal to my views. But such cases are certainly exceptional, the general rule being a gradual increase in number, till the group reaches its maximum, and then, sooner or later, it gradually decreases. If the number of the species of a genus, or the number of the genera of a family, be represented by a vertical line of varying thickness, crossing the successive geological formations in which the species are found, the line will sometimes falsely appear to begin at its lower end, not in a sharp point, but abruptly; it then gradually thickens upwards, sometimes keeping for a space of equal thickness, and ultimately thins out in the upper beds, marking the decrease and final extinction of the species. This gradual increase in number of the species of a group is strictly conformable with my theory, as the species of the same genus, and the genera of the same family, can increase only slowly and progressively; for the process of modification and the production of a number of allied forms must be slow and gradual one species giving rise first to two or three varieties, these being slowly converted into species, which, in their turn, produce by equally slow steps other species, and so on, like the branching of a great tree from a single stem, till the group becomes large.

On Extinction.—We have as yet spoken only incidentally of the disappearance of species and of groups of species. On the theory of natural selection the extinction of old forms and the production of new and improved forms are intimately connected together. The old notion of all the inhabitants of the earth having been swept away at successive periods by catastrophes is very generally given up, even by those geologists, as Elie de Beaumont, Murchison, Barrande, etc., whose general views would naturally lead them to this conclusion. On the contrary, we have every reason to believe, from the study of the tertiary formations, that species and groups of species gradually disappear, one after another, first from one spot, then from another, and, finally, from the world. Both single species and whole groups of species last for very unequal periods; some groups, as we have seen, having endured from the earliest dawn of life to the present day; some having disappeared before the close of the palæozoic period. No fixed law seems to determine the length of time during which any single species or any single genus endures. There is reason to believe that the complete extinction of the species of a group is generally a slower process than their production: if the appearance and disappearance of a group of species be represented, as before, by a vertical line of varying thickness, the line is found to taper more gradually at its upper end, which marks the progress of extermination, than at its lower end, which marks the first appearance and increase in numbers of the species. In some cases, however, the extermination of whole groups of beings, as of ammonites towards the close of the secondary period, has been wonderfully sudden.

The whole subject of the extinction of species has been involved in the most gratuitous mystery. Some authors have even supposed that as the individual has a definite length of life, so have species a definite duration. No one, I think, can have marvelled more at the extinction of species than I have done. When I found in La Plata the tooth of a horse embedded with the remains of Mastodon, Megatherium, Toxodon, and other extinct monsters, which all co-existed with still living shells at a very late geological period, I was filled with astonishment; for seeing that the horse, since its introduction by the Spaniards into South America, has run wild over the whole country, and has increased in numbers at

an unparalleled rate, I asked myself what could so recently have exterminated the former horse under conditions of life apparently so favourable. But how utterly groundless was my astonishment. Professor Owen soon perceived that the tooth, though so like that of the existing horse, belonged to an extinct species. Had this horse been still living, but in some degree rare, no naturalist would have felt the least surprise at its rarity; for rarity is the attribute of a vast number of species of all classes, in all countries. If we ask ourselves why this or that species is rare, we answer that something is unfavourable in its conditions of life; but what that something is, we can hardly ever tell. On the supposition of the fossil horse still existing as a rare species, we might have felt certain from the analogy of all other animals, even of the slow-breeding elephant, and from the history of the naturalisation of the domestic horse in South America, that under more favourable conditions it would in a very few years have stocked the whole continent. But we could not have told what the unfavourable conditions were which checked its increase, whether some one or several contingencies, and at what period of the horse's life, and in what degree, they severally acted. If the conditions had gone on, however slowly, becoming less and less favourable, we assuredly should not have perceived the fact, yet the fossil horse would certainly have become rarer and rarer, and finally extinct—its place being seized on by some more successful competitor.

It is most difficult always to remember that the increase of every living being is constantly being checked by unperceived injurious agencies, and that these same unperceived agencies are amply sufficient to cause rarity, and finally extinction. We see in many cases in the more recent tertiary formations that rarity precedes extinction; and we know that this has been the progress of events with those animals which have been exterminated, either locally or wholly, through man's agency. I may repeat what I published in 1845—namely, that to admit that species generally become rare before they become extinct—to feel no surprise at the rarity of a species, and yet to marvel greatly when it ceases to exist, is much the same as to admit that sickness in the individual is the forerunner of death—to feel no surprise at sickness, but when the sick man dies, to wonder and to suspect that he died by some unknown deed of violence.

The theory of natural selection is grounded on the belief that each new variety, and ultimately each new species, is produced and maintained by having some advantage over those with which it comes into competition; and the consequent extinction of less favoured forms almost inevitably follows. It is the same with our domestic productions: when a new and slightly improved variety has been raised, it at first supplants the less improved varieties in the same neighbourhood; when much improved, it is transported far and near, like our shorthorn cattle, and takes the place of other breeds in other countries. Thus the appearance of new forms and the disappearance of old forms, both natural and artificial, are bound together. In certain flourishing groups the number of new specific forms which have been produced within a given time is probably greater than that of the old specific forms which have been exterminated; but we know that the number of species has not gone on indefinitely increasing, at least during the later geological periods, so that, looking to later times, we may believe that the production of new forms has caused the extinction of about the same number of old forms.

The competition will generally be most severe, as formerly explained and illustrated by examples, between the forms which are most like each other in all respects. Hence the improved and modified descendants of a species will generally cause the externination of the parent-species; and if many new forms have been developed from any one species, the nearest allies of that species —i.e., the species of the same genus—will be the most liable to extermination. Thus, as I believe, a number of new species descended from one species—that is, a new genus-comes to supplant an old genus, belonging to the same family. But it must often have happened that a new species belonging to some one group will have seized on the place occupied by a species belonging to a distinct group, and thus caused its extermination; and if many allied forms be developed from the successful intruder, many will have to yield their places; and it will generally be allied forms which will suffer from some inherited inferiority in common. But whether it be species belonging to the same or to a distinct class, which yield their places to

other species which have been modified or improved, a few of the sufferers may often long be preserved, from being fitted to some peculiar line of life, or from inhabiting some distant and isolated station, where they have escaped severe competition. For instance, a single species of Trigonia, a great genus of shells in the secondary formations, survives in the Australian seas; and a few members of the great and almost extinct group of Ganoid fishes still inhabit our fresh waters. Therefore, the utter extinction of a group is generally, as we have seen, a slower process than its production.

With respect to the apparently sudden extermination of whole families or orders, as of Trilobites at the close of the palæozoic period, and of Ammonites at the close

of the secondary period, we must remember what has been already said on the probable wide intervals of time between our consecutive formations; and in these intervals there may have been much slow extermination. Moreover, when by sudden immigration or by unusually rapid development, many species of a new group have taken possession of a new group have

taken possession of a new area, they will have exterminated in a correspondingly rapid manner many of the old inhabitants; and the forms which thus yield their places

will commonly be allied, for they will partake of some inferiority in common.

Thus, as it seems to me, the manner in which single species and whole groups of species become extinct accords well with the theory of natural selection. We need not marvel at extinction; if we must marvel, let it be at our presumption in imagining for a moment that we understand the many complex contingencies on which the existence of each species depends. If we forget for an instant that each species tends to increase inordinately, and that some check is always in action, yet seldom perceived by us, the whole economy of nature will be utterly obscured. Whenever we can precisely say why this species is more abundant in individuals than that; why this species and not another can be naturalised in a given country; then, and not till then, we may justly feel surprised why we cannot account for the extinction of this particular species or group of species.

On the Forms of Life changing almost simultaneously throughout the World.— Scarcely any palæontological discovery is more striking than the fact that the forms of life change almost simultaneously

throughout the world. Thus our European Chalk formation can be recognised in many distant parts of the world, under the most different climates, where not a fragment of the mineral chalk itself can be foundnamely, in North America, in equatorial South America, in Tierra del Fuego, at the Cape of Good Hope, and in the peninsula of India. For at these distant points the organic remains in certain beds present an unmistakeable degree of resemblance to those of the Chalk. It is not that the same species are met with; for in some cases not one species is identically the same, but they belong to the same families, genera, and sections of genera, and sometimes are similarly characterised in such trifling points as mere superficial sculpture. Moreover, other forms which are not found in the Chalk of Europe, but which occur in the formations either above or below, are similarly absent at these distant points of the world. In the several successive palæozoic formations of Russia, Western Europe, and North America a similar parallelism in the forms of life has been observed by several authors .: so it is, according to Lyell, with the several European and North American tertiary deposits. Even if the few fossil species which are common to the Old and New Worlds be kept wholly out of view, the general parallelism in the successive forms of life, in the stages of the widely-separated palæozoic and tertiary periods, would still be manifest, and the several formations could be easily correlated.

These observations, however, relate to the marine inhabitants of distant parts of the world: we have not sufficient data to judge whether the productions of the land and of fresh water change at distant points in the same parallel manner. We may doubt whether they have thus changed: if the Megatherium, Mylodon, Macrauchenia, and Toxodon had been brought to Europe from La Plata, without any information in regard to their geological position, no one would have suspected that they had coexisted with still living sea-shells; but as these anomalous monsters co-existed with the Mastodon and Horse, it might at least have been inferred that they had lived during one of the later tertiary stages.

When the marine forms of life are spoken of as having changed simultaneously throughout the world, it must not be supposed that this expression relates to the same thousandth or hundred-thousandth year, or even that it has a very strict

geological sense; for if all the marine animals which live at the present day in Europe, and all those that lived in Europe during the pleistocene period (an enormously remote period as measured by years, including the whole glacial epoch), were to be compared with those now living in South America or in Australia, the most skilful naturalist would hardly be able to say whether the existing or the pleistocene inhabitants of Europe resembled most closely those of the southern hemisphere. So, again, several highly-competent observers believe that the existing productions of the United States are more closely related to those which lived in Europe during certain later tertiary stages than to those which now live here; and, if this be so, it is evident that fossiliferous beds deposited at the present day on the shores of North America would hereafter be liable to be classed with somewhat older European beds. Nevertheless, looking to a remotely-future epoch, there can, I think, be little doubt that all the more modern marine formations—namely, the upper pliocene, the pleistocene, and strictly modern beds, of Europe, North and South America, and Australia, from containing fossil remains in some degree allied, and from not including those forms which are only found in the older underlying deposits —would be correctly ranked as simultaneous in a geological sense.

The fact of the forms of life changing simultaneously in the above large sense, at distant parts of the world, has greatly struck those admirable observers, MM. de Verneuil and d'Archiac. After referring to the parallelism of the palæozoic forms of life in various parts of Europe, they add: "If, struck by this strange sequence, we turn our attention to North America, and there discover a series of analogous phenomena, it will appear certain that all these modifications of species, their extinction, and the introduction of new ones, cannot be owing to mere changes in marine currents or other causes more or less local and temporary, but depend on general laws which govern the whole animal kingdom." M. Barrande has made forcible remarks to precisely the same effect. It is, indeed, quite futile to look to changes of currents, climate, or other physical conditions, as the cause of these great mutations in the forms of life throughout the world, under the most different climates. We must, as Barrande has remarked, look to some special law. We shall see this more clearly when we treat of the present distribution of organic beings, and find how slight is the relation between the physical conditions of various countries and the nature of their inhabitants.

This great fact of the parallel succession of the forms of life throughout the world is explicable on the theory of natural selection. New species are formed by new varieties arising which have some advantage over older forms; and those forms which are already dominant, or have some advantage over the other forms in their own country, would naturally oftenest give rise to new varieties or incipient species; for these latter must be victorious in a still higher degree in order to be preserved and to survive. We have distinct evidence on this head in the plants which are dominant—that is, which are commonest in their own homes, and are most widely diffused, having produced the greatest number of new varieties. It is also natural that the dominant, varying, and farspreading species, which already have invaded to a certain extent the territories of other species; should be those which would have the best chance of spreading still further, and of giving rise in new countries to new varieties and species. The process of diffusion may often be very slow, being dependent on climatal and geographical changes, or on strange accidents; but, in the long run, the dominant forms will generally succeed in spreading. The diffusion would, it is probable, be slower with the terrestrial inhabitants of distinct continents than with the marine inhabitants of the continuous sea. We might, therefore, expect to find, as we apparently do find, a less strict degree of parallel succession in the productions of the land than of the sea.

Dominant species spreading from any region might encounter still more dominant species, and then their triumphant course, or even their existence, would cease. We know not at all precisely what are all the conditions most favourable for the multiplication of new and dominant species; but we can, I think, clearly see that a number of individuals, from giving a better chance of the appearance of favourable variations, and that severe competition with many already existing forms, would be highly favourable, as would be the power of spreading into new territories. A certain amount of isolation, recurring at long intervals of time, would probably be also favourable, as before explained. One

quarter of the world may have been most favourable for the production of new and dominant species on the land, and another for those in the waters of the sea. If two great regions had been for a long period favourably circumstanced in an equal degree, whenever their inhabitants met the battle would be prolonged and severe, and some from one birthplace and some from the other might be victorious. But, in the course of time, the forms dominant in the highest degree, wherever produced, would tend everywhere to prevail. As they prevailed, they would cause the extinction of other and inferior forms; and as these inferior forms would be allied in groups by inheritance, whole groups would tend slowly to disappear, though here and there a single member might long be enabled to survive.

Thus, as it seems to me, the parallel, and, taken in a large sense, simultaneous, succession of the same forms of life throughout the world accords well with the principle of new species having been formed by dominant species spreading widely and varying: the new species thus produced being themselves dominant owing to inheritance, and to having already had some advantage over their parents or over other species; these again spreading, varying, and producing new species. The forms which are beaten and which yield their places to the new and victorious forms, will generally be allied in groups, from inheriting some inferiority in common; and therefore as new and improved groups spread throughout the world, old groups will disappear from the world, and the succession of forms in both ways will everywhere tend to correspond.

There is one other remark connected with this subject worth making. I have given my reasons for believing that all our greater fossiliferous formations were deposited during periods of subsidence, and that blank intervals of yast duration occurred during the periods when the bed of the sea was either stationary or rising, and likewise when sediment was not thrown down quickly enough to embed and preserve organic remains. During these long and blank intervals I suppose that the inhabitants of each region underwent a considerable amount of modification and extinction, and that there was much migration from other parts of the world. As we have reason to believe that large areas are affected by the same movement, it is probable that strictly contemporaneous formations have often been accumulated over very wide spaces in the same quarter of the world; but we are far from having any right to conclude that this has invariably been the case, and that large areas have invariably been affected by the same movements. When two formations have been deposited in two regions during nearly, but not exactly, the same period, we should find in both, from the causes explained in the foregoing paragraphs, the same general succession in the forms of life; but the species would not exactly correspond, for there will have been a little more time in the one region than in the other for modification, extinction, and immigration.

I suspect that cases of this nature occur in Europe. Mr. Prestwich, in his admirable Memoirs on the eocene deposits of England and France, is able to draw a close general parallelism between the successive stages in the two countries; but when he compares certain stages in England with those in France, although he finds in both a curious accordance in the numbers of the species belonging to the same genera, yet the species themselves differ in a manner very difficult to account for, considering the proximity of the two areas—unless, indeed, it be assumed that an isthmus separated two seas inhabited by distinct, but contemporaneous, faunas. Lyell has made similar observations on some of the later tertiary formations. Barrande also shows that there is a striking general parallelism in the successive Silurian deposits of Bohemia and Scandinavia; nevertheless, he finds a surprising amount of difference in the species. If the several formations in these regions have not been deposited during the same exact periods—a formation in one region often corresponding with a blank interval in the other—and if in both regions the species have gone on slowly changing during the accumulation of the several formations and during the long intervals of time between them—in this case, the several formations in the two regions could be arranged in the same order, in accordance with the general succession of the form of life, and the order would falsely appear to be strictly parallel; nevertheless, the species would not all be the same in the apparently corresponding stages in the two regions.

On the Affinities of extinct Species to each other and to living forms.—Let us now look to the mutual affinities of extinct and living species. They all fall into one grand

natural system; and this fact is at once explained on the principle of descent. The more ancient any form is, the more, as a general rule, it differs from living forms. But, as Buckland long ago remarked, all fossils can be classed either in still existing groups or between them. That the extinct forms of life help to fill up the wide intervals between existing genera, families, and orders cannot be disputed. For if we confine our attention either to the living or to the extinct alone, the series is far less perfect than if we combine both into one general system. With respect to the Vertebrata, whole pages could be filled with striking illustrations from our great palæontologist, Owen, showing how extinct animals fall in between existing groups. Cuvier ranked the Ruminants and Pachyderms as the two most distinct orders of mammals; but Owen has discovered so many fossil links that he has had to alter the whole classification of these two orders, and has placed certain pachyderms in the same sub-order with ruminants: for example, he dissolves by fine gradations the apparently wide difference between the pig and the camel. In regard to the Invertebrata, Barrande (and a higher authority could not be named) asserts that he is every day taught that palæozoic animals, though belonging to the same orders, families, or genera with those living at the present day, were not at this early epoch limited in such distinct groups as they now are.

Some writers have objected to any extinct species or group of species being considered as intermediate between living species or groups. If by this term it is meant that an extinct form is directly intermediate in all its characters between two living forms, the objection is probably valid. But I apprehend that in a perfectly natural classification many fossil species would have to stand between living species, and some extinct genera between living genera, even between genera belonging to distinct families. The most common case, especially with respect to very distinct groups, such as fish and reptiles, seems to be that, supposing them to be distinguished at the present day from each other by a dozen characters, the ancient members of the same two groups would be distinguished by a somewhat lesser number of characters, so that the two groups, though formerly quite distinct, at that period made some small approach to each other.

It is a common belief that the more

ancient a form is, by so much the more it tends to connect by some of its characters groups now widely separated from each other. This remark, no doubt, must be restricted to those groups which have undergone much change in the course of geological ages; and it would be difficult to prove the truth of the proposition, for every now and then even a living animal, as the Lepidosiren, is discovered having affinities directed towards very distinct groups. Yet if we compare the older Reptiles and Batrachians, the older Fish, the older Cephalopods, and the eocene Mammals, with the more recent members of the same classes, we must admit that there is some truth in the remark.

Let us see how far these several facts and inferences accord with the theory of descent with modification. As the subject is somewhat complex, I must request the reader to turn to the diagram in the preliminary. We may suppose that the numbered letters represent genera, and the dotted lines diverging from them the species in each genus. The diagram is much too simple, too few genera and too few species being given; but this is unimportant for us. The horizontal lines may represent successive geological formations, and all the forms beneath the uppermost line may be considered as extinct. The three existing genera, a14, q14, p14, will form a small family; b^{14} and f^{14} , a closely allied family or sub-family; and oth, eth, mth, a third family. These three families, together with the many extinct genera on the several lines of descent diverging from the parentform (A), will form an order; for all will have inherited something in common from their ancient and common progenitor. On the principle of the continued tendency to divergence of character, which was formerly illustrated by this diagram, the more recent any form is, the more it will generally differ from its ancient progenitor. Hence we can understand the rule that the most ancient fossils differ most from existing forms. We must not, however, assume that divergence of character is a necessary contingency; it depends solely on the descendants from a species being thus enabled to seize on many and different places in the economy of nature. Therefore, it is quite possible, as we have seen in the case of some Silurian forms, that a species might go on being slightly modified in relation to its slightly altered conditions of life, and yet retain throughout a vast period the same general

characteristics. This is represented in the

diagram by the letter F14.

All the many forms, extinct and recent, descended from (A) make, as before remarked, one order; and this order, from the continued effects of extinction and divergence of character, has become divided into several sub-families and families, some of which are supposed to have perished at different periods, and some to have endured to the present day.

By looking at the diagram we can see that, if many of the extinct forms supposed to be embedded in the successive formations were discovered at several points low down in the series, the three existing families on the uppermost line would be rendered less distinct from each other. If, for instance, the genera a^{1} , a^{5} , a^{10} , f^{8} , m^{3} , m^{6} , m9, were disinterred, these three families would be so closely linked together that they probably would have to be united into one great family, in nearly the same manner as has occurred with ruminants and pachyderms. Yet he who objected to call the extinct genera, which thus linked the living genera of three families together, intermediate in character would be justified, as they are intermediate, not directly, but only by a long and circuitous course through many widely different forms. If many extinct forms were to be discovered above one of the middle horizontal lines or geological formations-for instance, above No. VI.—but none from beneath this line, then only the two families on the left hand (namely, a14, etc., and b14, etc.) would have to be united into one family; and the two other families (namely, at to ft, now including five genera, and o14 to m14) would yet remain distinct. These two families, however, would be less distinct from each other than they were before the discovery of the fossils. If, for instance, we suppose the existing genera of the two families to differ from each other by a dozen characters, in this case the genera, at the early period marked VI., would differ by a lesser number of characters; for at this early stage of descent they have not diverged in character from the common progenitor of the order nearly so much as they subsequently diverged. Thus it comes that ancient and extinct genera are often in some slight degree intermediate in character between their modified descendants, or between their collateral relations.

In nature the case will be far more complicated than is represented in the diagram; for the groups will have been more nume-

rous, they will have endured for extremely unequal lengths of time, and will have been modified in various degrees. As we possess only the last volume of the geological record, and that in a very broken condition, we have no right to expect, except in very-rare cases, to fill up wide intervals in the natural system, and thus unite distinct families or orders. All that we have a right to expect is that those groups which have within known geological periods undergone much modification should in the older formations make some slight approach to each other; so that the older members should differ less from each other in some of their characters than do the existing members of the same groups; and this by the concurrent evidence of our best palæontologists seems frequently to be the case.

Thus on the theory of descent with modification the main facts with respect to the mutual affinities of the extinct forms of life to each other and to living forms seem to me explained in a satisfactory manner. And they are wholly inexplicable

on any other view ..

On this same theory, it is evident that the fauna of any great period in the earth's history will be intermediate in general character between that which preceded and that which succeeded it. Thus the species which lived at the sixth great stage of descent in the diagram are the modified offspring of those which lived at the fifth stage, and are the parents of those which became still more modified at the seventh stage; hence they could hardly fail to be nearly intermediate in character between the forms of life above and below. We must, however, allow for the entire extinction of some preceding forms, and in any one region for the immigration of new forms from other regions, and for a large amount of modification, during the long and blank intervals between the successive formations. Subject to these allowances, the fauna of each geological period undoubtedly is intermediate in character between the preceding and succeeding faunas. I need give only one instance—namely, the manner in which the fossils of the Devonian system, when this system was first discovered, were at once recognised by palæontologists as intermediate in character between those of the overlying carboniferous and underlying Silurian system. But each fauna is not necessarily exactly intermediate, as unequal intervals of time have elapsed between consecutive formations.

It is no real objection to the truth of the statement, that the fauna of each period as a whole is nearly intermediate in character between the preceding and succeeding faunas, that certain genera offer exceptions to the rule. For instance, mastodons and elephants, when arranged by Dr. Falconer in two series, first according to their mutual affinities and then according to their periods. of existence, do not accord in arrangement. The species extreme in character are not' the oldest or the most recent; nor are those which are intermediate in character, intermediate in age. But supposing for an instant, in this and other such cases, that the record of the first appearance and disappearance of the species was perfect, we have no reason to believe that forms successively produced necessarily endure for corresponding lengths of time: a very ancient form might occasionally last much longer than a form elsewhere subsequently produced, especially in the case of terrestrial productions inhabiting separated districts. To compare small things with great: if the principal living and extinct races of the domestic pigeon were arranged as well as they could be in serial affinity, this arrangement would not closely accord with the order in time of their production, and still less with the order of their disappearance; for the parent rock-pigeon now lives, and many varieties between the rock-pigeon and the carrier have become extinct; and carriers which are extreme in the important character of length of beak originated earlier than short-beaked tumblers, which are at the opposite end of the series in this same respect.

Closely connected with the statement, that the organic remains from an intermediate formation are in some degree intermediate in character, is the fact, insisted on by all palæontologists, that fossils from two consecutive formations are far more closely related to each other than are the fossils from two remote formations. Pictet gives as a well-known instance the general resemblance of the organic remains from the several stages of the Chalk formation, though the species are distinct in each stage. This fact alone, from its generality, seems to have shaken Professor Pictet in his firm belief in the immutability of species. He who is acquainted with the distribution of existing species over the globe will not attempt to account for the close resemblance of the distinct species in closely-consecutive formations by the physical conditions of the ancient areas

having remained nearly the same. Let it be remembered that the forms of life, at least those inhabiting the sea, have changed almost simultaneously throughout the world, and therefore under the most different climates and conditions. Consider the prodigious vicissitudes of climate during the pleistocene period, which includes the whole glacial period, and note how little the specific forms of the inhabitants of the sea have been affected.

On the theory of descent, the full meaning of the fact of fossil remains from closely-consecutive formations, though ranked as distinct species, being closely related is obvious. As the accumulation of each formation has often been interrupted, and as long blank intervals have intervened between successive formations, we ought not to expect to find, as I attempted to show in the last chapter, in any one or two formations all the intermediate varieties between the species which appeared at the commencement and close of these periods; but we ought to find after intervals, very long as measured by years, but only moderately long as measured geologically, closely-allied forms, or, as they have been called by some authors, representative species; and these we assuredly do find. We find, in short, such evidence of the slow and scarcely sensible mutation of specific forms as we have a just right to expect to find.

On the state of Development of Ancient Forms.—There has been much discussion whether recent forms are more highly developed than ancient. I will not here enter on this subject, for naturalists have not as yet defined to each other's satisfaction what is meant by high and low forms. The best definition probably is that the higher forms have their organs more distinctly specialised for different functions; and, as such division of physiological labour seems to be an advantage to each being, natural selection will constantly tend insofar to make the later and more modified forms higher than their early progenitors, or than the slightly modified descendants of such progenitors. In a more general sense, the more recent forms must, on my theory, be higher than the more ancient; for each new species is formed by having had some advantage in the struggle for life over other and preceding forms. If, under a nearly similar climate, the eocene inhabitants of one quarter of the world were put into

competition with the existing inhabitants of the same or some other quarter, the eocene fauna or flora would certainly be beaten and exterminated, as would a secondary fauna by an eocene and a palæozoic fauna by a secondary fauna. I do not doubt that this process of improvement has affected in a marked and sensible manner the organisation of the more recent and victorious forms of life, in comparison with the ancient and beaten forms; but I can see no way of testing this sort of progress. Crustaceans, for instance, not the highest in their own class, may have beaten the highest molluscs. From the extraordinary manner in which European productions have recently spread over New Zealand, and have seized on places which must have been previously occupied, we may believe, if all the animals and plants of Great Britain were set free in New Zealand, that in the course of time a multitude of British forms would become thoroughly naturalised there, and would exterminate many of the natives. On the other hand, from what we now see occurring in New Zealand, and from hardly a single inhabitant of the southern hemisphere having become wild in any part of Europe, we may doubt, if all the productions of New Zealand were set free in Great Britain, whether any considerable number would be enabled to seize on places now occupied by our native plants and animals. Under this point of view, the productions of Great Britain may be said to be higher than those of New Zealand. Yet the most skilful naturalist, from an examination of the species of the two countries, could not have foreseen this result.

Agassiz insists that ancient animals resemble, to a certain extent, the embryos of recent animals of the same classes, or that the geological succession of extinct forms is in some degree parallel to the embryological development of recent forms. I must follow Pictet and Huxley in thinking that the truth of this doctrine is very far from proved. Yet I fully expect to see it hereafter confirmed, at least in regard to subordinate groups, which have branched off from each other within comparatively · recent times. For this doctrine of Agassiz accords well with the theory of natural selection. In a future chapter I shall attempt to show that the adult differs from its embryo, owing to variations supervening at a not early age and being inherited at a corresponding age. This process, while it leaves the embryo almost unaltered, continually adds, in the course of successive generations, more and more difference to the adult.

Thus the embryo comes to be left as a sort of picture, preserved by nature, of the ancient and less modified condition of each animal. This view may be true, and yet it may never be capable of full proof. Seeing, for instance, that the oldest known mammals, reptiles, and fish strictly belong to their own proper classes, though some . of these old forms are in a slight degree less distinct from each other than are the typical members of the same groups at the present day, it would be vain to look for animals having the common embryological character of the Vertebrata until beds far beneath the lowest Silurian strata are discovered-a discovery of which the chance is very small.

On the Succession of the same Types within the same areas during the later tertiary periods.-Mr. Clift, many years ago, showed that the fossil mammals from the Australian caves were closely allied to the living marsupials of that continent. In South America a similar relationship is manifest, even to an uneducated eye, in the gigantic pieces of armour like those of the armadillo, found in several parts of La Plata; and Professor Owen has shown in the most striking manner that most of the fossii mammals, buried there in such numbers, are related to South American types. This relationship is even more clearly seen in the wonderful collection of fossil bones made by MM. Lund and Clausen in the caves of Brazil. I was so much impressed with these facts that I strongly insisted, in 1839 and 1845, on this "law of the succession of types"-on "this wonderful relationship in the same continent between the dead and the living." Professor Owen has subsequently extended the same generalisation to the mammals of the Old World. We see the same law in this author's restorations of the extinct and gigantic birds of New Zealand. We see it also in the birds of the caves of Brazil. Mr. Woodward has shown that the same law holds good with sea-shells; but, from the wide distribution of most genera of molluscs, it is not well displayed by them. Other cases could be added, as the relation between the extinct and living land-shells of Madeira, and between the extinct and living brackish-water shells of the Aralo-Caspian Sea.

Now, what does this remarkable law of the succession of the same types within the same areas mean? He would be a bold man who, after comparing the present climate of Australia and of parts of South America under the same latitude, would attempt to account, on the one hand, by dissimilar physical conditions for the dissimilarity of the inhabitants of these two continents, and, on the other hand, by similarity of conditions, for the uniformity of the same types in each during the later tertiary periods. Nor can it be pretended that it is an immutable law that marsupials should have been chiefly or solely produced in Australia; or that Edentata and other American types should have been solely produced in South America. For we know that Europe in ancient times was peopled by numerous marsupials; and I have shown in the publications above alluded to that in America the law of distribution of terrestrial mammals was formerly different from what it now is. North America formerly partook strongly of the present character of the southern half of the continent; and the southern half was formerly more closely allied than it is at present to the northern half. In a similar manner we know from Falconer and Cautley's discoveries that northern India was formerly more closely related in its mammals to Africa than it is at the present time. Analogous facts could be given in relation to the distribution of marine animals.

On the theory of descent with modification, the great law of the long-enduring, but not immutable, succession of the same types within the same areas is at once explained; for the inhabitants of each quarter of the world will obviously tend to leave in that quarter, during the next succeeding period of time, closely-allied, though in some degree modified, descendants. If the inhabitants of one continent formerly differed greatly from those of another continent, so will their modified descendants still differ in nearly the same manner and degree. But after very long intervals of time, and after great geographical changes permitting much inter-migration, the feebler will yield to the more dominant forms, and there will be nothing immutable in the laws of past and present distribution.

It may be asked, in ridicule, whether I suppose that the megatherium and other allied huge monsters have left behind them in South America the sloth, armadillo, and ant-eater as their degenerate descendants. This cannot for an instant be admitted.

These huge animals have become wholly extinct, and have left no progeny. But in the caves of Brazil there are many extinct species which are closely allied in size and in other characters to the species still living in South America; and some of these fossils may be the actual progenitors of living species. It must not be forgotten that, on my theory, all the species of the same genus have descended from some one species, so that if six genera, each having eight species, be found in one geological formation, and in the next succeeding formation there be six other allied or representative genera with the same number of species, then we may conclude that only one species of each of the six older genera has left modified descendants, constituting the six new genera. The other seven species of the old genera have all died out and have left no progeny. Or, which would probably be a far-commoner case, two or three species of two or three alone of the six older genera will have been the parents of the six new genera, the other old species and the other whole old genera having become utterly extinct. In failing orders, with the genera and species decreasing in numbers, as apparently is the case of the Edentata of South America, still fewer genera and species will have left modified blood-descendants.

Summary of the preceding and present Chapters.—I have attempted to show that the geological record is extremely imperfect; that only a small portion of the globe has been geologically explored with care; that only certain classes of organic beings have been largely preserved in a fossil state; that the number both of specimens and of species preserved in our museums is absolutely as nothing compared with the incalculable number of generations which must have passed away even during a single formation; that, owing to subsidence being necessary for the accumulation of fossiliferous deposits thick enough to resist future degradation, enormous intervals of time have elapsed between the successive formations; that there has probably been more extinction during the periods of subsidence, and more variation during the periods of elevation, and during the latter the record will have been least perfectly kept; that each single formation has not been continuously deposited; that the duration of each formation is, perhaps, short compared with the average duration of specific forms; that migration has

played an important part in the first appearance of new forms in any one area and formation; that widely-ranging species are those which have varied most, and have oftenest given rise to new species; and that varieties have at first often been local. All these causes, taken conjointly, must have tended to make the geological record extremely imperfect, and will to a large extent explain why we do not find interminable varieties, connecting together all the extinct and existing forms of life by the finest graduated steps.

He who rejects these views on the nature of the geological record will rightly reject my whole theory. For he may ask in vain where are the numberless transitional links which must formerly have connected the closely-allied or representative species found in the several stages of the same great formation. He may disbelieve in the enormous intervals of time which have elapsed between our consecutive formations; he may overlook how important a part migration must have played when the formations of any one great region alone, as that of Europe, are considered; he may urge the apparent, but often falsely apparent, sudden coming-in of whole groups of species. He may ask where are the remains of those infinitely numerous organisms which must have existed long before the first bed of the Silurian system was deposited: I can answer this latter question only hypothetically, by saying that, as far as we can see, where our oceans now extend they have for an enormous period extended, and where our oscillating continents now stand they have stood ever since the Silurian epoch, but that long before that period the world may have presented a wholly different aspect; and that the older continents, formed of formations older than any known to us, may now all be in a metamorphosed condition, or may lie buried under the ocean.

Passing from these difficulties, all the other great leading facts in palæontology seem to me simply to follow on the theory of descent with modification through natural selection. We can thus understand how it is that new species come in slowly and successively; how species of different classes do not necessarily change together, or at the same rate, or in the same degree, yet in the long run that all undergo modification to some extent. The extinction of old forms is the almost inevitable consequence of the production

of new forms. We can understand why, when a species has once disappeared, it never reappears. Groups of species increase in numbers slowly, and endure for unequal periods of time; for the process of modification is necessarily slow, and depends on many complex contingencies. The dominant species of the larger dominant groups tend to leave many modified descendants, and thus new sub-groups and groups are formed. As these are formed, the species of the less vigorous groups, from their inferiority inherited from a common progenitor, tend to become extinct together, and to leave no modified offspring on the face of the earth. But the utter extinction of a whole group of species may often be a very slow process, from the survival of a few descendants, lingering in protected and isolated situations. When a group has once wholly disappeared, it does not reappear, for the link of generation has been broken.

We can understand how the spreading of the dominant forms of life, which are those that oftenest vary, will in the long run tend to people the world with allied, but modified, descendants; and these will generally succeed in taking the places of those groups of species which are their inferiors in the struggle for existence. Hence, after long intervals of time, the productions of the world will appear to

have changed simultaneously.

We can understand how it is that all the forms of life, ancient and recent, make together one grand system, for all are connected by generation. We can understand, from the continued tendency to divergence of character, why the more ancient a form is, the more it generally differs from those now living. Why ancient and extinct forms often tend to fill up gaps between existing forms, sometimes blending two groups previously classed as distinct into one, but more commonly only bringing them a little closer together. The more ancient a form is, the more often, apparently, it displays characters in some degree intermediate between groups now distinct; for the more ancient a form is, the more nearly it will be related to, and consequently resemble, the common progenitor of groups since become widely divergent. Extinct forms are seldom directly intermediate. between existing forms, but are intermediate only by a long and circuitous course through many extinct and very different forms. We can clearly see why the organic remains of closely-consecutive

formations are more closely allied to each other than are those of remote formations, for the forms are more closely linked together by generation: we can clearly see why the remains of an intermediate formation are intermediate in character.

The inhabitants of each successive period in the world's history have beaten their predecessors in the race for life, and are, insofar, higher in the scale of nature; and this may account for that vague, yet ill-defined sentiment, felt by many palæontologists, that organisation on the whole has progressed. If it should hereafter be proved that ancient animals resemble, to a certain extent, the embryos of more recent animals of the same class, the fact will be intelligible. The succession of the

same types of structure within the same areas during the later geological periods ceases to be mysterious, and is simply

explained by inheritance.

If, then, the geological record be as imperfect as I believe it to be, and it may, at least, be asserted that the record cannot be proved to be much more perfect, the main objections to the theory of natural selection are greatly diminished or disappear. On the other hand, all the chief laws of palæontology plainly proclaim, as it seems to me, that species have been produced by ordinary generation: old forms having been supplanted by new and improved forms of life, produced by the laws of variation still acting around us, and preserved by natural selection.

CHAPTER XI.

GEOGRAPHICAL DISTRIBUTION

Present distribution cannot be accounted for by differences in physical conditions—Importance of barriers—Affinity of the productions of the same continent—Centres of creation—Means of dispersal, by changes of climate and of the level of the land, and by occasional means—Dispersal during the Glacial period co-extensive with the world.

In considering the distribution of organic beings over the face of the globe, the first great fact which strikes us is that neither the similarity nor the dissimilarity of the inhabitants of various regions can be accounted for by their climatal and other physical conditions. Of late almost every author who has studied the subject has come to this conclusion. The case of America alone would almost suffice to prove its truth; for if we exclude the northern parts, where the circumpolar land is almost continuous, all authors agree that one of the most fundamental divisions in geographical distribution is that between the New and Old Worlds; yet, if we travel over the vast American continent, from the central parts of the United States to its extreme southern point, we meet with the most diversified conditions; the most humid

districts, arid deserts, lofty mountains, grassy plains, forests, marshes, lakes, and great rivers, under almost every temperature. There is hardly a climate or condition in the Old World which cannot be paralleled in the New-at least as closely as the same species generally require; for it is a most rare case to find a group of organisms confined to any small spot having conditions peculiar in only a slight degree; for instance, small areas in the Old World could be pointed out hotter than any in the New World, yet these are not inhabited by a peculiar fauna or flora. Notwithstanding this parallelism in the conditions of the Old and New Worlds, how widely different are their living productions!

In the southern hemisphere, if we compare large tracts of land in Australia, South Africa, and western South America, between latitudes 25° and 35°, we shall find parts extremely similar in all their conditions, yet it would not be possible to point out three faunas and floras more utterly dissimilar. Or, again, we may compare the productions of South America south of latitude 35° with those north of 25°, which consequently inhabit a considerably different

climate, and they will be found incomparably more closely related to each other than they are to the productions of Australia or Africa under nearly the same climate. Analogous facts could be given with respect

to the inhabitants of the sea.

A second great fact which strikes us in our general review is that barriers of any kind, or obstacles to free migration, are related in a close and important manner to the differences between the productions of various regions. We see this in the great difference of nearly all the terrestrial productions of the New and Old Worlds, excepting in the northern parts, where the land almost joins, and where, under a slightly different climate, there might have been free migration for the northern temperate forms, as there now is for the strictly arctic productions. We see the same fact in the great difference between the inhabitants of Australia, Africa, and South America under the same latitude, for these countries are almost as much isolated from each other as is possible. On each continent also we see the same fact; for on the opposite sides of lofty and continuous mountain-ranges, and of great deserts, and sometimes even of large rivers, we find different productions; though as mountainchains, deserts, etc., are not as impassable, or likely to have endured so long as the oceans separating continents, the differences are very inferior in degree to those characteristic of distinct continents.

Turning to the sea, we find the same law. No two marine faunas are more distinct, with hardly a fish, shell, or crab in common, than those of the eastern and western shores of South and Central America; yet these great faunas are separated only by the narrow, but impassable, isthmus of Panama. Westward of the shores of America a wide space of open ocean extends, with not an island as a halting-place for emigrants; here we have a barrier of another kind, and, as soon as this is passed, we meet in the eastern islands of the Pacific with another and totally distinct fauna. So that here, three marine faunas range far northward and southward, in parallel lines not far from each other, under corresponding. climates; but from being separated from each other by impassable barriers, either of land or open sea, they are wholly distinct. On the other hand, proceeding still further westward from the eastern islands of the tropical parts of the Pacific, we encounter no impassable barriers, and we

have innumerable islands as halting-places, or continuous coasts, until, after travelling over a hemisphere, we come to the shores of Africa; and over this vast space we meet with no well-defined and distinct marine faunas. Although hardly one shell, crab, or fish is common to the above-named three approximate faunas of Eastern and Western America and the eastern Pacific islands, yet many fish range from the Pacific into the Indian Ocean, and many shells are common to the eastern islands of the Pacific and the eastern shores of Africa, on almost exactly opposite meridians

of longitude.

A third great fact, partly included in the foregoing statements, is the affinity of the productions of the same continent or sea, though the species themselves are distinct at different points and stations. It is a law of the widest generality, and every continent offers innumerable instances. Nevertheless, the naturalist, in travelling, for instance, from north to south, never fails to be struck by the manner in which successive groups of beings, specifically distinct, yet clearly related, replace each other. He hears from closely-allied yet distinct kinds of birds notes nearly similar, and sees their nests similarly constructed, but not quite alike, with eggs coloured in nearly the same manner. The plains near the Straits of Magellan are inhabited by one species of Rhea (American ostrich), and northward the plains of La Plata by another species of the same genus, and not by a true ostrich or emu, like those found in Africa and Australia under the same latitude. On these same plains of La Plata we see the agouti and bizcacha, animals having nearly the same habits as our hares and rabbits, and belonging to the same order of Rodents; but they plainly display an American type of structure. We ascend the lofty peaks of the Cordillera, and we find an alpine species of bizcacha; we look to the waters, and we do not find the beaver or musk-rat, but the coypu and capybara, rodents of the American type. Innumerable other instances could be given. If we look to the islands off the American shore, however much they may differingeological structure, the inhabitants, though they may be all peculiar species, are essentially American. We may look back to past ages, as shown in the last chapter, and we find American types then prevalent on the American continent and in the American seas. We see in these facts some deep organic bond, prevailing throughout space and time, over the same areas of land and water, and independent of their physical conditions. The naturalist must feel little curiosity who is not led to inquire what this bond is.

This bond, on my theory, is simply inheritance, that cause which alone, as far as we positively know, produces organisms quite like, or, as we see in the case of varieties, nearly like each other. . The dissimilarity of the inhabitants of different regions may be attributed to modification through natural selection, and in a quite subordinate degree to the direct influence of different physical conditions. The degree of dissimilarity will depend on the migration of the more dominant forms of life from one region into another having been effected with more or less ease, at periods more or less remote—on the nature and number of the former immigrantsand on their action and reaction in their mutual struggles for life—the relation of organism to organism being, as I have already often remarked, the most important of all relations. Thus the high importance of barriers comes into play by checking migration; as does time for the slow process of modification through natural selection. Widely-ranging species, abounding in individuals, which have already triumphed over many competitors in their own widely-extended homes will have the best chance of seizing on new places when they spread into new countries. In their new homes they will be exposed to new conditions, and will frequently undergo further modification and improvement; and thus they will become still further victorious, and will produce groups of modified descendants. On this principle of inheritance with modification, we can understand how it is that sections of genera, whole genera, and even families, are confined to the same areas, as is so commonly and notoriously the case.

I believe, as was remarked in the last chapter, in no law of necessary development. As the variability of each species is an independent property, and will be taken advantage of by natural selection, only so far as it profits the individual in its complex struggle for life, so the degree of modification in different species will be no uniform quantity. If, for instance, a number of species which stand in direct competition with each other migrate in a body into a new and afterwards isolated country, they will be little liable to modification;

for neither migration nor isolation in themselves can do anything. These principles come into play only by bringing organisms into new relations with each other, and in a lesser degree with the surrounding physical conditions. As we have seen in the last chapter that some forms have retained nearly the same character from an enormously remote geological period, so certain species have migrated over vast spaces, and have not become greatly modified.

On these views it is obvious that the several species of the same genus, though inhabiting the most distant quarters of the world, must originally have proceeded from the same source, as they have descended from the same progenitor. In the case of those species which have undergone during whole geological periods but little modication, there is not much difficulty in believing that they may have migrated from the same region; for during the vast geographical and climatal changes which will have supervened since ancient times almost any amount of migration is possible. But in many other cases in which we have reason to believe that the species of a genus have been produced within comparatively recent times there is great difficulty on this head. It is also obvious that the individuals of the same species, though now iuhabiting distant and isolated regions, must have proceeded from one spot, where their parents were first produced; for, as explained in the last chapter, it is incredible that individuals identically the same should ever have been produced through natural selection from parents specifically distinct.

We are thus brought to the question which has been largely discussed by naturalists-namely, whether species have been created at one or more points of the earth's surface. Undoubtedly there are very many cases of extreme difficulty in understanding how the same species could possibly have migrated from some one point to the several distant and isolated points where now found. Nevertheless, the simplicity of the view that each species was first produced within a single region captivates the mind. He who rejects it rejects the vera causa of ordinary generation with subsequent migration, and calls in the agency of a miracle. It is universally admitted that in most cases the area inhabited by a species is continuous; and when a plant or animal inhabits two points so distant from each other, or with an interval of such a nature that the space

could not be easily passed over by migration, the fact is given as something remarkable and exceptional. The capacity of migrating across the sea is more distinctly limited in terrestrial mammals than perhaps in any other organic beings; and, accordingly, we find no inexplicable cases of the same mammal inhabiting distant points of the world. No geologist will feel any difficulty in such cases as Great Britain having been formerly united to Europe, and consequently possessing the same quadrupeds. But if the same species can be produced at two separate points, why do we not find a single mammal common to Europe and Australia or South America? The conditions of life are nearly the same, so that a multitude of European animals and plants have become naturalised in America and Australia; and some of the aboriginal plants are identically the same as these distant points of the northern and southern hemispheres. The answer, as I believe, is that mammals have not been able to migrate, whereas some plants, from their varied means of dispersal, have migrated across the vast and broken interspace. The great and striking influence which barriers of every kind have had on distribution is intelligible only on the view that the great majority of species have been produced on one side alone, and have not been able to migrate to the other side. Some few families, many sub-families, very many genera, and a still greater number of sections of genera, are confined to a single region; and it has been observed by several naturalists that the most natural genera, or those genera in which the species are most closely related to each other, are generally local or confined to one area. What a strange anomaly it would be if, when coming one step lower in the series, to the individuals of the same species, a directly opposite rule prevailed, and species were not local, but had been produced in two or more distinct areas!

Hence it seems to me, as it has to many other naturalists, that the view of each species having been produced in one area alone, and having subsequently migrated from that area as far as its powers of migration and subsistence under past and present conditions permitted, is the most probable. Undoubtedly, many cases occur in which we cannot explain how the same species could have passed from one point to the other. But the geographical and climatal changes which have certainly occurred within recent geological times must have

interrupted or rendered discontinuous the formerly continuous range of many species. So that we are reduced to consider whether the exceptions to continuity of range are so numerous and of so grave a nature that we ought to give up the belief, rendered probable by general considerations, that each species has been produced within one area, and has migrated thence as far as it could. It would be hopelessly tedious to discuss' all the exceptional cases of the same species now living at distant and separated points; nor do I for a moment pretend that any explanation could be offered of many such cases. But, after some preliminary remarks, I will discuss a few of the most striking classes of facts-namely, the existence of the same species on the summits of distant mountain-ranges, and at distant points in the arctic and antarctic regions; and, secondly (in the following chapter), the wide distribution of freshwater productions; and, thirdly, the occurrence of the same terrestrial species on islands and on the mainland, though separated by hundreds of miles of open sea. If the existence of the same species at distant and isolated points of the earth's surface, can in many instances be explained on the view of each species having migrated from a single birthplace, then, considering our ignorance with respect to former climatal and geographical changes and various occasional means of transport, the belief that this has been the universal law seems to me incomparably the safest.

In discussing this subject, we shall be enabled at the same time to consider a point equally important for us-namely, whether the several distinct species of a genus, which on my theory have all desscended from a common progenitor, can have migrated (undergoing modification during some part of their migration) from the area inhabited by their progenitor. If it can be shown to be almost invariably the case that a region of which most of its inhabitants are closely related to, or belong to the same genera with the species of a second region, has probably received at some former period immigrants from this other region, my theory will be strengthened; for we can clearly understand, on the principle of modification, why the inhabitants of a region should be related to those of another region whence it has been stocked. A volcanic island, for instance, upheaved and formed at the distance of a few hundreds of miles from a continent, would probably receive from

it in the course of time a few colonists, and their descendants, though modified, would still be plainly related by inheritance to the inhabitants of the continent. Cases of this nature are common, and are, as we shall hereafter more fully see, inexplicable on the theory of independent creation. This view of the relation of species in one region to those in another does not differ much (by substituting the word variety for species) from that lately advanced in an ingenious paper by Mr. Wallace, in which he concludes that "every species has come into existence coincident both in space and time with a pre-existing closely-allied species." And I now know from correspondence that this coincidence he attributes to generation with modification.

The previous remarks on "single and multiple centres of creation" do not directly bear on another allied question-namely, whether all the individuals of the same species have descended from a single pair, or single hermaphrodite, or whether, as some authors suppose, from many individuals simultaneously created. With those organic beings which never intercross (if such exist), the species, on my theory, must have descended from a succession of improved varieties, which will never have blended with other individuals or varieties, but will have supplanted each other; so that at each successive stage of modification and improvement all the individuals of each variety will have descended from a single parent. But in the majority of cases—namely, with all organisms which habitually unite for each birth, or which often intercross—I believe that during the slow process of modification the individuals of the species will have been kept nearly uniform by intercrossing; so that many ' individuals will have gone on simultaneously changing, and the whole amount of modification will not have been due, at each stage, to descent from a single parent. To illustrate what I mean: Our English race-horses differ slightly from the horses of every other breed; but they do not owe their difference and superiority to descent from any single pair, but to continued care in selecting and training many individuals during many generations.

Before discussing the three classes of facts which I have selected as presenting the greatest amount of difficulty on the theory of "single centres of creation," I must say a few words on the means of

dispersal.

Means of Dispersal.—Sir C. Lyell and other authors have ably treated this subject. I can give here only the briefest abstract of the more important facts. Change of climate must have had a powerful influence on migration: a region when its climate was different may have been a high road for migration, but now be impassable. I shall, however, presently have to discuss. this branch of the subject in some detail. Changes of level in the land must also have been highly influential: a narrow isthmus now separates two marine faunas; submerge it, or let it formerly have been submerged, and the two faunas will now blend or may formerly have blended: where the sea now extends, land may at a former period have connected islands or possibly even continents together, and thus have allowed terrestrial productions to pass from one to the other. No geologist will dispute that great mutations of level have occurred within the period of existing organisms, Edward Forbes insisted that all the islands in the Atlantic must recently have been connected with Europe or . Africa, and Europe likewise with America. Other authors have thus hypothetically bridged over every ocean and have united almost every island to some mainland. If, indeed, the arguments used by Forbes are to be trusted, it must be admitted that scarcely a single island exists which has not recently been united to some continent. This view cuts the Gordian knot of the dispersal of the same species to the most distant points, and removes many a difficulty; but to the best of my judgment we are not authorised in admitting such enormous geographical changes within the period of existing species. It seems to me that we have abundant evidence of great oscillations of level in our continents; but not of such vast changes in their position and extension as to have united them within the recent period to each other and to the several intervening oceanic islands. I freely admit the former existence of many islands, now buried beneath the sea, which may have served as haltingplaces for plants and for many animals during their migration. In the coralproducing oceans such sunken islands are now marked, as I believe, by rings of coral or atolls standing over them. Whenever it is fully admitted, as I believe it will some day be, that each species has proceeded from a single birthplace, and when in the course of time we know something definite about the means of distribution,

we shall be enabled to speculate with security on the former extension of the land. But I do not believe that it will ever be proved that within the recent period continents which are now quite separate have been continuously, or almost continuously, united with each other, and with the many existing oceanic islands. Several facts in distribution—such as the great differences in the marine faunas on the opposite sides of almost every continentthe close relation of the tertiary inhabitants of several lands and even seas to their present inhabitants—a certain degree of relation (as we shall hereafter see) between the distribution of mammals and the depth of the sea-these and other such facts seem to me opposed to the admission of such prodigious geographical revolutions within the recent period as are necessitated on the view advanced by Forbes and admitted by many of his followers. The nature and relative proportions of the inhabitants of oceanic islands likewise seem to me opposed to the belief of their former continuity with continents. Nor does their almost universally volcanic composition favour the admission that they are the wrecks of sunken continents-if they had originally existed as mountainranges on the land, some at least of the islands would have been formed, like other mountain summits, of granite, metamorphic schists, old fossiliferous or other such rocks, instead of consisting of mere piles of volcanic matter.

I must now say a few words on what are called accidental means, but which more properly might be called occasional means, of distribution. I shall here confine myself to plants. In botanical works this or that plant is stated to be ill adapted for wide dissemination; but for transport across the sea the greater or less facilities may be said to be almost wholly unknown. Until I tried, with Mr. Berkeley's aid, a few experiments, it was not even known how far seeds could resist the injurious action of sea-water. To my surprise, I found that, out of 87 kinds, 64 germinated after an immersion of 28 days, and a few survived an immersion of 137 days. For convenience sake, I chiefly tried small seeds, without the capsule or fruit; and, as all of these sank in a few days, they could not be floated across wide spaces of the sea, whether or not they were injured by the salt-water. Afterwards I tried some larger fruits, capsules, etc., and some of these floated for a long time. It is well

known what a difference there is in the buoyancy of green and seasoned timber; and it occurred to me that floods might wash down plants or branches, and that these might be dried on the banks, and then by a fresh rise in the stream be washed into the sea. Hence I was led to dry stems and branches of 94 plants with ripe fruit, and to place them on sea-water. The majority sank quickly, but some which while green floated for a very short time, when dried floated much longer; for instance, ripe hazel-nuts sank immediately, but when dried they floated for 90 days, and afterwards when planted they germinated; an asparagus plant with ripe berries floated for 23 days, when dried it floated for 85 days, and the seeds afterwards germinated; the ripe seeds of Helosciadium sank in 2 days, when dried they floated for above 90 days, and afterwards germinated. Altogether out of the 94 dried plants, 18 floated for above 28 days, and some of the 18 floated for a very much longer period. So that as 64 seeds germinated after an immersion of 28 days, and as 18 plants with ripe fruit (but not all the same species as in the foregoing experiment) floated, after being dried, for above 28 days, as far as we may infer anything from these scanty facts, we may conclude that the seeds of 100 plants of any country might be floated by sea-currents during 28 days, and would retain their power of germination. In Johnston's Physical Atlas the average rate of the several Atlantic currents is 33 miles per diem (some currents running at the rate of 60 miles per diem); on this average, the seeds of 100 plants belonging to one country might be floated across 924 miles of sea to another country; and when stranded, if blown to a favourable spot by an inland gale, they would germinate.

Subsequently to my experiments, M. Martens tried similar ones, but in a much better manner, for he placed the seeds in a box in the actual sea, so that they were alternately wet and exposed to the air like · really floating plants. He tried 98 seeds, mostly different from mine; but he chose many large fruits and likewise seeds from plants which live near the sea; and this would have favoured the average length of their flotation and of their resistance to the injurious action of the salt-water. On the other hand, he did not previously dry the plants or branches with the fruit; and this, as we have seen, would have caused some of them to have floated much longer. The

result was that 18 of his seeds floated for 42 days, and were then capable of germination. But I do not doubt that plants exposed to the waves would float for a less time than those protected from violent movement, as in our experiments. Therefore, it would perhaps be safer to assume that the seeds of about 100 plants of a flora, after having been dried, could be floated across a space of sea 900 miles in width, and would then germinate. The fact of the larger fruits often floating longer than the small is interesting; as plants with large seeds or fruit could hardly be transported by any other means; and Alph. de Candolle has shown that such plants

generally have restricted ranges.

But seeds may be occasionally transported in another manner. Drift timber is thrown up on most islands, even on those in the midst of the wildest oceans; and the natives of the coral islands in the Pacific procure stones for their tools solely from the roots of drifted trees, these stones being a valuable royal tax. I find on examination that, when irregularly-shaped stones are embedded in the roots of trees, small parcels of earth are very frequently enclosed in their interstices and behind them-so perfectly that not a particle could be washed away in the longest transport: out of one small portion of earth thus completely enclosed by wood in an oak about 50 years old three dicotyledonous plants germinated. I am certain of the accuracy of this observation. Again, I can show that the carcasses of birds, when floating on the sea, sometimes escape being immediately devoured; and seeds of many kinds in the crops of floating birds long retain their vitality. Peas and vetches, for instance, are killed by even a few days' immersion in sea-water; but some taken out of the crop of a pigeon which had floated on artificial salt water for 30 days to my surprise nearly all germinated.

Living birds can hardly fail to be highly effective agents in the transportation of seeds. I could give many facts showing how frequently birds of many kinds are blown by gales to vast distances across the ocean. We may, I think, safely assume that under such circumstances their rate of flight would often be 35 miles an hour; and some authors have given a far higher estimate. I have never seen an instance of nutritious seeds passing through the intestines of a bird; but hard seeds of fruit pass uninjured through even the digestive organs of a turkey. In the

course of two months I picked up in my garden 12 kinds of seeds out of the excrement of small birds, and these seemed perfect, and some of them which I tried germinated. But the following fact is more important: the crops of birds do not secrete gastric juice, and do not in the least injure, as I know by trial, the germination of seeds. Now, after a bird has found and devoured a large supply of food, it is positively asserted that all the grains do not pass into the gizzard for twelve or even eighteen hours. A bird in this interval might easily be blown to the distance of 500 miles; and hawks are known to look out for tired birds, and the contents of their torn crops might thus readily get scattered. Mr. Brent informs me that a friend of his had to give up flying carrier-pigeons from France to England, as the hawks on the English coast destroyed so many on their arrival. Some hawks and owls bolt their prey whole, and after an interval of from twelve to twenty hours disgorge pellets which, as I know from experiments made in the Zoological Gardens, include seeds capable of germination. Some seeds of the oat, wheat, millet, canary, hemp, clover, and beet germinated after having been from twelve to twenty-one hours in the stomachs of different birds of prey; and two seeds of beet grew after having been thus retained for two days and fourteen hours. Fresh-water fish, I find, eat seeds of many land and water plants; fish are frequently devoured by birds, and thus the seeds might be transported from place to place. I forced many kinds of seeds into the stomachs of dead fish, and then gave their bodies to fishing-eagles, storks, and pelicans; these birds, after an interval of many hours, either rejected the seeds in pellets or passed them in their excrement; and several of these seeds retained their power of germination. Certain seeds, however, were always killed by this process.

Although the beaks and feet of birds are generally quite clean, I can show that earth sometimes adheres to them; in one instance I removed twenty-two grains of argillaceous earth from one foot of a partridge, and in this earth there was a pebble quite as large as the seed of a vetch. Thus seeds might occasionally be transported to great distances; for many facts could be given showing that soil almost everywhere is charged with seeds. Reflect for a moment on the millions of quails which annually cross the Mediterranean; and can we doubt that the earth adhering to

their feet would sometimes include a few minute seeds? But I shall presently have

to recur to this subject.

As icebergs are known to be sometimes loaded with earth and stones, and have even carried brushwood, bones, and the nest of a land-bird, I can hardly doubt that they must occasionally have transported seeds from one part to another of the arctic and antarctic regions, as suggested by Lyell, and, during the Glacial · period, from one part of the now temperate regions to another. In the Azores, from the large number of the species of plants common to Europe, in comparison with the plants of other oceanic islands nearer to the mainland, and (as remarked by Mr. H. C. Watson) from the somewhat northern character of the flora in comparison with the latitude, I suspected that these islands had been partly stocked by ice-borne seeds during the Glacial epoch. At my request, Sir C. Lyell wrote to M. Hartung to inquire whether he had observed erratic boulders on these islands, and he answered that he had found large fragments of granite and other rocks which do not occur in the archipelago. Hence we may safely infer that icebergs formerly landed their rocky burthens on the shores of these midocean islands, and it is at least possible that they may have brought thither the seeds of northern plants.

Considering that the several above means of transport, and that several other means, which without doubt remain to be discovered, have been in action year after year, for centuries and tens of thousands of years, it would, I think, be a marvellous fact if many plants had not thus become widely transported. These means of transport are sometimes called accidental, but this is not strictly correct: the currents of the sea are not accidental, nor is the direction of prevalent gales of wind. It should be observed that scarcely any means of transport would carry seed for very great distances, for seeds do not retain their vitality when exposed for a great length of time to the action of sea-water, nor could they be long carried in the crops or intestines of birds. These means, however, would suffice for occasional transport across tracts of sea some hundred miles in breadth, or from island to island, or from a continent to a neighbouring island, but not from one distant continent to another. The floras of distant continents would not by such means become mingled in any great degree, but would remain as distinct

as we now see them to be. The currents, from their course, would never bring seeds from North America to Britain, though they might and do bring seeds from the West Indies to our western shores, where, if not killed by so long an immersion in salt water, they could not endure our climate. Almost every year one or two land-birds are blown across the whole Atlantic Ocean, from North America to the western shores of Ireland and England; but seeds could be transported by these wanderers only by one means-namely, in dirt sticking to their feet, which is in itself a rare accident. Even in this case, how small would be the chance of a seed falling on favourable soil, and coming to maturity! But it would be a great error to argue that because a well-stocked island, like Great Britain, has not, as far as is known (and it would be very difficult to prove this), received within the last few centuries, through occasional means of transport, immigrants from Europe or any other continent, that a poorly-stocked island, though standing more remote from the mainland, would not receive colonists by similar means. I do not doubt that out of twenty seeds or animals transported to an island, even if far less well stocked than Britain, scarcely more than one would be so well fitted to its new home as to become naturalised. But this, as it seems to me, is no valid argument against what would be effected by occasional means of transport, during the long lapse of geological time, while an island was being upheaved and formed, and before it had become fully stocked with inhabitants. On almost bare land, with few or no destructive insects or birds living there, nearly every seed which chanced to arrive, if fitted for the climate, would be sure to germinate and survive.

Dispersal during the Glacial period. The identity of many plants and animals on mountain-summits, separated from each other by hundreds of miles of lowlands, where the Alpine species could not possibly exist, is one of the most striking cases known of the same species living at distant points, without the apparent possibility of their having migrated from one to the other. It is, indeed, a remarkable fact to see so many of the same plants living on the snowy regions of the Alps or Pyrenees and in the extreme northern parts of Europe; but it is far more remarkable that the plants on the White Mountains, in the United States of America, are all

the same with those of Labrador, and nearly all the same, as we hear from Asa Gray, with those on the loftiest mountains of Europe. Even as long ago as 1747 such facts led Gmelin to conclude that the same species must have been independently created at several distinct points; and we might have remained in this same belief had not Agassiz and others called vivid attention to the Glacial period, which, as we shall immediately see, affords a simple explanation of these facts. We have evidence of almost every conceivable kind, organic and inorganic, that within a very recent geological period central Europe and North America suffered under an Arctic climate. The ruins of a house by fire do not tell their tale more plainly than do the mountains of Scotland and Wales, with their scored flanks, polished surfaces, and perched boulders, of the icy streams with which their valleys were lately filled. So greatly has the climate of Europe changed that in Northern Italy gigantic moraines left by old glaciers are now clothed by the vine and maize. Throughout a large part of the United States, erratic boulders and rocks, scored by drifted icebergs and coast-ice, plainly reveal a former cold period.

The former influence of the glacial climate on the distribution of the inhabitants of Europe, as explained with remarkable clearness by Edward Forbes, is substantially as follows. But we shall follow the changes more readily by supposing a new Glacial period to come slowly on, and then pass away, as formerly occurred. As the cold came on, and as each more southern zone became fitted for arctic beings and ill-fitted for their former more temperate inhabitants, the latter would be supplanted, and arctic productions would take their places. The inhabitants of the more temperate regions would at the same time travel southward, unless they were stopped by barriers, in which case they would perish. The mountains would become covered with snow and ice, and their former Alpine inhabitants would descend to the plains. By the time that the cold had reached its maximum we should have a uniform arctic fauna and flora covering the central parts of Europe as far south as the Alps and Pyrenees, and even stretching into Spain. The now temperate regions of the United States would likewise be covered by arctic plants and animals, and these would be nearly the same with those of Europe; for the present circumpolar

inhabitants, which we suppose to have everywhere travelled southward, are remarkably uniform round the world. We may suppose that the Glacial period came on a little earlier or later in North America than in Europe, so will the southern migration there have been a little earlier or later; but this will make no difference in the final result.

As the warmth returned, the arctic forms would retreat northward, closely followed up in their retreat by the productions of the more temperate regions. And as the snow melted from the bases of the mountains, the arctic forms would seize on the cleared and thawed ground, always ascending higher and higher as the warmth increased, while their brethren were pursuing their northern journey. Hence, when the warmth had fully returned, the same arctic species which had lately lived in a body together on the lowlands of the Old and New Worlds would be left isolated on distant mountain-summits (having been exterminated on all lesser heights) and in the arctic regions of both hemispheres.

Thus we can understand the identity of many plants at points so immensely remote as on the mountains of the United States and of Europe. We can thus also understand the fact that the Alpine plants of each mountain-range are more especially related to the arctic forms living due north or nearly due north of them; for the migration as the cold came on, and the re-migration on the returning warmth, will generally have been due south and north. The Alpine plants, for example, of Scotland, as remarked by Mr. H. C. Watson, and those of the Pyrenees, as remarked by Ramond, are more especially allied to the plants of northern Scandinavia; those of the United States to Labrador; those of the mountains of Siberia to the arctic regions of that country. These views, grounded as they are on the perfectly well-ascertained occurrence of a former Glacial period, seem to me to explain in so satisfactory a manner the present distribution of the alpine and arctic productions of Europe and America, that, when in other regions we find the same species on distant mountain-summits, we may almost conclude, without other evidence, that a colder climate permitted their former migration across the low intervening tracts, since become too warm for their existence.

If the climate, since the Glacial period, has ever been in any degree warmer than at present (as some geologists in the

United States believe to have been the case, chiefly from the distribution of the fossil Gnathodon), then the arctic and temperate productions will at a very late period have marched a little further north, and subsequently have retreated to their present homes; but I have met with no satisfactory evidence with respect to this intercalated slightly warmer period since

the Glacial period.

The arctic forms, during their long southern migration and re-migration northward, will have been exposed to nearly the same climate, and, as is especially to be noticed, they will have kept in a body together; consequently, their mutual relations will not have been much disturbed, and, in accordance with the principles inculcated in this volume, they will not have been liable to much modification. with our alpine productions, left isolated from the moment of the returning warmth, first at the bases and ultimately on the summits of the mountains, the case will have been somewhat different; for it is not likely that all the same arctic species will have been left on mountain-ranges distant from each other, and have survived there ever since; they will also, in all probability, have become mingled with ancient alpine species which must have existed on the mountains before the commencement of the Glacial epoch, and which during its coldest period will have been temporarily driven down to the plains; they will also have been exposed to somewhat different climatal influences. Their mutual relations will thus have been in some degree disturbed; consequently, they will have been liable to modification, and this we find has been the case; for, if we compare the present alpine plants and animals of the several great European mountain-ranges, though very many of the species are identically the same, some present varieties, some are ranked as doubtful forms, and some few are distinct yet closely-allied or representative species.

In illustrating what, as I believe, actually took place during the Glacial period, I assumed that at its commencement the arctic productions were as uniform round the polar regions as they are at the present day. But the foregoing remarks on distribution apply not only to strictly arctic forms, but also to many sub-arctic and to some few northern temperate forms, for some of these are the same on the lower mountains and on the plains of North America and Europe; and it may be

reasonably asked how I account for the necessary degree of uniformity of the subarctic and northern temperate forms round the world at the commencement of the Glacial period. At the present day the sub-arctic and northern temperate productions of the Old and New Worlds are separated from each other by the Atlantic Ocean and by the extreme northern part of the Pacific. During the Glacial period, when the inhabitants of the Old and New Worlds lived further southwards than at present, they must have been still more completely separated by wider spaces of ocean. I believe the above difficulty may be surmounted by looking to still earlier changes of climate of an opposite nature. We have good reason to believe that during the newer Pliocene period, before the Glacial epoch, and while the majority of the inhabitants of the world were specifically the same as now, the climate was warmer than at the present day. Hence we may suppose that the organisms now living under the climate of latitude 60°, during the Pliocene period lived further north under the Polar Circle, in latitude 66°-67°; and that the strictly arctic productions then lived on the broken land still nearer to the pole. Now, if we look at a globe, we shall see that under the Polar Circle there is almost continuous land from western Europe, through Siberia, to eastern America. And to the continuity of the circumpolar land, and to the consequent freedom for intermigration under a more favourable climate, I attribute the necessary amount of uniformity in the subarctic and northern temperate productions of the Old and New Worlds at a period anterior to the Glacial epoch.

Believing, from reasons before alluded to, that our continents have long remained in nearly the same relative position, though subjected to large, but partial, oscillations of level, I am strongly inclined to extend the above view, and to infer that during some earlier and still warmer period, such as the older Pliocene period, a large number of the same plants and animals inhabited the almost continuous circumpolar land; and that these plants and animals, both in the Old and New Worlds, began slowly to migrate southwards as the climate became less warm, long before the commencement of the Glacial period. We now see, as I believe, their descendants, mostly in a modified condition, in the central parts of Europe and the United States. On this view we can understand the relationship,

with very little identity, between the productions of North America and Europea relationship which is most remarkable considering the distance of the two areas and their separation by the Atlantic Ocean. We can further understand the singular fact, remarked on by several observers, that the productions of Europe and America during the later tertiary stages were more closely related to each other than they are at the present time; for during these warmer periods the northern parts of the Old and New Worlds will have been almost continuously united by land, serving as a bridge, since rendered impassable by cold, for the intermigration of their inhabitants.

During the slowly-decreasing warmth of the Pliocene period, as soon as the species in common which inhabited the New and Old Worlds migrated south of the Polar Circle, they must have been completely cut off from each other. This separation, as far as the more temperate productions are concerned, took place long ages ago. And as the plants and animals migrated southward, they will have become mingled in the one great region with the native American productions, and have had to compete with them; and, in the other great region, with those of the Old World. Consequently, we have here everything favourable for much modification—for far more modification than with the Alpine productions, left isolated within a much more recent period, on the several mountainranges and on the arctic lands of the two Worlds. Hence it has come that, when we compare the now living productions of the temperate regions of the New and Old Worlds, we find very few identical species (though Asa Gray has lately shown that more plants are identical than was formerly supposed), but we find in every great class many forms which some naturalists rank as geographical races and others as distinct species, and a host of closely-allied or representative forms which are ranked by all naturalists as specifically distinct.

As on the land, so in the waters of the sea, a slow southern migration of a marine fauna, which during the Pliocene or even a somewhat earlier period was nearly uniform along the continuous shores of the Polar Circle, will account, on the theory of modification, for many closed-allied forms now living in areas completely sundered. Thus, I think, we can understand the presence of many existing and tertiary representative forms on the eastern and western shores of temperate North America;

and the still more striking case of many closely-allied crustaceans (as described in Dana's admirable work), of some fish and other marine animals, in the Mediterranean and in the seas of Japan—areas now separated by a continent and by nearly a hemisphare of

sphere of equatorial ocean.

These cases of relationship, without identity, of the inhabitants of seas now disjoined, and likewise of the past and present inhabitants of the temperate lands of North America and Europe, are inexplicable on the theory of creation. We cannot say that they have been created alike, in correspondence with the nearly similar physical conditions of the areas; for if we compare, for instance, certain parts of South America with the southern continents of the Old World, we see countries closely corresponding in all their physical conditions, but with their inhabitants utterly dissimilar.

But we must return to our more immediate subject, the Glacial period. I am convinced that Forbes's view may be largely extended. In Europe we have the plainest evidence of the cold period, from the western shores of Britain to the Oural range, and southward to the Pyrenees. We may infer from the frozen mammals and nature of the mountain vegetation that Siberia was similarly affected. Along the Himalaya, at points 900 miles apart, glaciers have left the marks of their former low descent; and in Sikkim Dr. Hooker saw maize growing on giganticancient moraines. South of the equator we have some direct evidence of former glacial action in New Zealand; and the same plants, found on widely-separated mountains in that island, tell the same story. If one account which has been published can be trusted, we have direct evidence of glacial action in the southeastern corner of Australia.

Looking to America: in the northern half, ice-borne fragments of rock have been observed on the eastern side as far south as latitude 36°-37°, and on the shores of the Pacific, where the climate is now so different, as far south as latitude 46°; erratic boulders have also been noticed on the Rocky Mountains. In the Cordillera of Equatorial South America glaciers once extended far below their present level. In central Chili I was astonished at the structure of a vast mound of detritus, about 800 feet in height, crossing a valley of the Andes; and this, I now feel convinced, was a gigantic moraine, left far below any existing glacier. Further south on both sides

of the continent, from latitude 41° to the southernmost extremity, we have the clearest evidence of former glacial action in huge boulders transported far from their parent source.

We do not know that the Glacial epoch was strictly simultaneous at these several far distant points on opposite sides of the world. But we have good evidence in almost every case that the epoch was included within the latest geological period. We have also excellent evidence that it endured for an enormous time, as measured by years, at each point. The cold may have come on, or have ceased, earlier at one point of the globe than at another, but seeing that it endured for long at each, and that it was contemporaneous in a geological sense, it seems to me probable that it was, during a part at least of the period, actually simultaneous throughout the world. Without some distinct evidence to the contrary, we may at least admit as probable that the glacial action was simultaneous on the eastern and western sides of North America, in the Cordillera under the equator and under the warmer temperate zones, and on both sides of the southern extremity of the continent. If this be admitted, it is difficult to avoid believing that the temperature of the whole world was at this period simultaneously cooler. But it would suffice for my purpose if the temperature was at the same time lower along certain broad belts of longitude.

On this view of the whole world, or at least of broad longitudinal belts, having been simultaneously colder from pole to pole, much light can be thrown on the present distribution of identical and allied species. In America Dr. Hooker has shown that between forty and fifty of the flowering plants of Tierra del Fuego, forming no inconsiderable part of its scanty flora, are common to Europe, enormously remote as these two points are; and there are many closely-allied species. On the lofty mountains of equatorial America a host of peculiar species belonging to European genera occur. On the highest mountains of Brazil some few European genera were found by Gardner which do not exist in the wide intervening hot countries. So on the Silla of Caraccas the illustrious Humboldt long ago found species belonging to genera characteristic of the Cordillera. On the mountains of Abyssinia several European forms and some few representatives of the peculiar flora of the Cape of Good Hope occur. At the Cape

of Good Hope a very few European species, believed not to have been introduced by man, and on the mountains some few representative European forms, are found which have not been discovered in the intertropical parts of Africa. On the Himalaya and on the isolated mountain-ranges of the peninsula of India, on the heights of Ceylon, and on the volcanic cones of Java, many plants occur either identically the same or representing each other, and at the same time representing plants of Europe, not found in the intervening hot lowlands. A list of the genera collected on the loftier peaks of Java raises a picture of a collection made on a hill in Europe! Still more striking is the fact that southern Australian forms are clearly represented by plants growing on the summits of the mountains of Borneo. Some of these Australian forms, as I hear from Dr. Hooker, extend along the heights of the peninsula of Malacca, and are thinly scattered, on the one hand, over India and, on the other, as far north as Japan.

On the southern mountains of Australia Dr. F. Müller has discovered several European species; other species, not introduced by man, occur on the lowlands; and a long list can be given, as I am informed by Dr. Hooker, of European genera found in Australia, but not in the intermediate torrid regions. In the admirable Introduction to the Flora of New Zealand, by Dr. Hooker, analogous and striking facts are given in regard to the plants of that large island. Hence we see that throughout the world the plants growing on the more lofty mountains, and on the temperate lowlands of the northern and southern hemispheres, are sometimes identically the same; but they are much oftener specifically distinct, though related to each other in a most remarkable manner.

This brief abstract applies to plants alone: some strictly analogous facts could be given on the distribution of terrestrial animals. In marine productions similar cases occur; as an example, I may quote a remark by the highest authority, Professor Dana, that "it is certainly a wonderful fact that New Zealand should have a closer resemblance in its crustacea to Great Britain, its antipode, than to any other part of the world." Sir J. Richardson also speaks of the reappearance on the shores of New Zealand, Tasmania, etc., of northern forms of fish. Dr. Hooker informs me that twenty-five species of Algæ are common to New Zealand and to Europe, but have not been found in the intermediate tropical seas.

. It should be observed that the northern species and forms found in the southern parts of the southern hemisphere, and on the mountain-ranges of the intertropical regions, are not arctic, but belong to the northern temperate zones. As Mr. H. C. Watson has recently remarked: "In receding from polar towards equatorial latitudes, the alpine or mountain floras really become less and less arctic." Many of the forms living on the mountains of the warmer regions of the earth and in the southern hemisphere are of doubtful value, being ranked by some naturalists as specifically distinct, by others as varieties; but some are certainly identical, and many, though closely related to northern forms,

must be ranked as distinct species. Now, let us see what light can be thrown. on the foregoing facts on the belief, supported as it is by a large body of geological evidence, that the whole world, or a large part of it, was, during the Glacial period, simultaneously much colder than at present. The Glacial period, as measured by years, must have been very long; and when we remember over what vast spaces some naturalised plants and animals have spread within a few centuries, this period wlll have been ample for any amount of migration. As the cold came slowly on, all the tropical plants and other productions will have retreated from both sides towards the equator, followed in the rear by the temperate productions, and these by the arctic; but with the latter we are not now concerned. The tropical plants probably suffered much extinction—how much no one can say; perhaps formerly the tropics supported as many species as we see at the present day crowded together at the Cape of Good Hope and in parts of temperate Australia. As we know that many tropical plants and animals can withstand a considerable amount of cold, many might have escaped extermination during a moderate fall of temperature, more especially by escaping into the lowest, most protected, and warmest districts. But the great fact to bear in mind is that all tropical productions will have suffered to a certain extent. On the other hand, the temperate productions, after migrating nearer to the equator, though they will have been placed under somewhat new conditions, will have suffered less. And it is certain that many temperate plants, if protected from the inroads of competitors, . !

can withstand a much warmer climate than their own. Hence it seems to me possible, bearing in mind that the tropical productions were in a suffering state, and could not have presented a firm front against intruders, that a certain number of the more vigorous and dominant temperate forms might have penetrated the native ranks, and have reached or even crossed the equator. The invasion would, of course, have been greatly favoured by high land, and perhaps by a dry climate; for Dr. Falconer informs me that it is the damp with the heat of the tropics which is so destructive to perennial plants from a temperate climate. On the other hand, the most humid and hottest districts will have afforded an asylum to the tropical natives. The mountain-ranges north-west of the Himalaya and the long line of the Cordillera seem to have afforded two great lines of invasion; and it is a striking fact, lately communicated to me by Dr. Hooker, that all the flowering plants, about forty-six in number, common to Tierra del Fuego and to Europe, still exist in North America, which must have lain on the line of march. But I do not doubt that some temperate productions entered and crossed even the lowlands of the tropics at the period when the cold was most intense—when arctic forms had migrated some twenty-five degrees of latitude from their native country and covered the land at the foot of the Pyrenees. At this period of extreme cold I believe that the climate under the equator at the level of the sea was about the same with that now felt there at the height of six or seven thousand feet. During this the coldest period, I suppose that large spaces of the tropical lowlands were clothed with a mingled tropical and temperate vegetation, like that now growing with strange luxuriance at the base of the Himalaya, as graphically described by Hooker.

Thus, as I believe, a considerable number of plants, a few terrestrial animals, and some marine productions migrated during the Glacial period from the northern and southern temperate zones into the intertropical regions, and some even crossed the equator. As the warmth returned, these temperate forms would naturally ascend the higher mountains, being exterminated on the lowlands; those which had not reached the equator would remigrate northward or southward towards their former homes; but the forms, chiefly northern, which had crossed the equator would travel still further from their homes

into the more temperate latitudes of the opposite hemisphere. Although we have reason to believe from geological evidence that the whole body of arctic shells underwent scarcely any modification during their long southern migration and re-migration northward, the case may have been wholly different with those intruding forms which settled themselves on the intertropical mountains and in the southern hemisphere. These, being surrounded by strangers, will have had to compete with many new forms of life; and it is probable that selected modifications in their structure, habits, and constitutions will have profited them. Thus many of these wanderers, though still plainly related by inheritance to their brethren of the northern or southern hemispheres, now exist in their new homes as well-marked varieties or as distinct species.

It is a remarkable fact, strongly insisted on by Hooker in regard to America, and by Alph. de Candolle in regard to Australia, that many more identical plants and allied forms have apparently migrated from the north to the south than in a reversed direction. We see, however, a few southern vegetable forms on the mountains of Borneo and Abyssinia. I suspect that this preponderant migration from north to south is due to the greater extent of land in the north, and to the northern forms having existed in their own homes in greater numbers, and having, consequently, been advanced through natural selection and competition to a higher stage of perfection or dominating power than the southern forms. And thus, when they became commingled during the Glacial period, the northern forms were enabled to beat the less powerful southern forms. Just in the same manner as we see at the present day that very many European productions cover the ground in La Plata, and in a lesser degree in Australia, and have to a certain extent beaten the natives; whereas extremely few southern forms have become naturalised in any part of Europe, though hides, wool, and other objects likely to carry seeds have been largely imported into Europe during the last two or three centuries from La Plata, and during the last thirty or forty years from Australia. Something of the same kind must have occurred on the intertropical mountains: no doubt before the Glacial period they were stocked with endemic Alpine forms; but these have almost everywhere largely yielded to the more dominant forms, generated in the larger areas and more efficient

workshops of the north. In many islands the native productions are nearly equalled or even outnumbered by the naturalised; and if the natives have not been actually exterminated, their numbers have been greatly reduced, and this is the first stage towards extinction. A mountain is an island on the land, and the intertropical mountains before the Glacial period must have been completely isolated; and I believe that the productions of these islands on the land yielded to those produced within the larger areas of the north, just in the same way as the productions of real islands have everywhere lately yielded to continental forms, naturalised by man's agency.

I am far from supposing that all difficulties are removed on the view here given in regard to the range and affinities of the allied species which live in the northern and southern temperate zones and on the mountains of the intertropical regions. Very many difficulties remain to be solved. I do not pretend to indicate the exact lines and means of migration, or the reason why certain species and not others have migrated-why certain species have been modified and have given rise to new groups of forms, and others have remained unaltered. We cannot hope to explain such facts, until we can say why one species and not another becomes naturalised by man's agency in a foreign land; why one ranges twice or thrice as far, and is twice or thrice as common, as another species within their own homes.

I have said that many difficulties remain to be solved: some of the most remarkable are stated with admirable clearness by Dr. Hooker in his botanical works on the antarctic regions. These cannot be here discussed. I will only say that as far as regards the occurrence of identical species at points so enormously remote as Kerguelen Land, New Zealand, and Fuegia, I believe that towards the close of the Glacial period icebergs, as suggested by Lyell, have been largely concerned in their dispersal. But the existence of several quite distinct species, belonging to genera exclusively confined to the south, at these and other distant points of the southern hemisphere, is, on my theory of descent with modification, a far more remarkable case of difficulty. For some of these species are so distinct that we cannot suppose that there has been time since the commencement of the Glacial period for their migration, and for their subsequent modification to the