more advantageous to this species to capture workers than to procreate them—the habit of collecting pupæ originally for food might by natural selection be strengthened and rendered permanent for the very different purpose of raising slaves. When the instinct was once acquired, if carried out to a much less extent even than in our British F. sanguinea, which, as we have seen, is less aided by its slaves than the same species in Switzerland, I can see no difficulty in natural selection increasing and modifying the instinct—always supposing each modification to be of use to the species—until an ant was formed as abjectly dependent on its slaves as is the Formica rufescens.

Cell-making instinct of the Hive-Bee.—I will not here enter on minute details on this subject, but will merely give an outline of the conclusions at which I have arrived. He must be a dull man who can examine the exquisite structure of a comb, so beautifully adapted to its end, without enthusiastic admiration. We hear from mathematicians that bees have practically solved a recondite problem, and have made their cells of the proper shape to hold the greatest possible amount of honey, with the least possible consumption of precious wax in their construction. It has been remarked that a skilful workman, with fitting tools and measures, would find it very difficult to make cells of wax of the true form, though this is perfectly effected by a crowd of bees working in a dark hive. Grant whatever instincts you please, and it seems at first quite inconceivable how they can make all the necessary angles and planes, or even perceive when they are correctly made. But the difficulty is not nearly so great as it at first appears: all this beautiful work can be shown, I think, to follow from a few very simple instincts.

I was led to investigate this subject by Mr. Waterhouse, who has shown that the form of the cell stands in close relation to the presence of adjoining cells; and the following view may, perhaps, be considered only as a modification of his theory. Let us look to the great principle of gradation, and see whether Nature does not reveal to us her method of work. At one end of a short series we have humble-bees, which use their old cocoons to hold honey, sometimes adding to them short tubes of wax, and likewise making separate and very irregular rounded cells of wax. At the

other end of the series we have the cells of the hive-bee, placed in a double layer: each cell, as is well known, is an hexagonal prism, with the basal edges of its six sides bevelled so as to fit on to a pyramid, formed of three rhombs. These rhombs have certain angles, and the three which form the pyramidal base of a single cell on one side of the comb enter into the composition of the bases of three adjoining cells on the opposite side. In the series between the extreme perfection of the cells of the hive-bee and the simplicity of those of the humble-bee we have the cells of the Mexican Melipona domestica carefully described and figured by Pierre Huber. The Melipona itself is intermediate in structure between the hive and humble bee, but more nearly related to the latter: it forms a nearly regular waxen comb of cylindrical cells, in which the young are hatched, and, in addition, some large cells of wax for holding honey. These latter cells are nearly spherical and of nearly equal sizes, and are aggregated into an irregular mass. But the important point to notice is that these cells are always made at that degree of nearness to each other that they would have intersected or broken into each other if the spheres had been completed; but this is never permitted, the bees building perfectly flat walls of wax between the spheres which thus tend to intersect. Hence each cell consists of an outer spherical portion and of two, three, or more perfectly flat surfaces, according as the cell adjoins two, three, or more other cells. When one cell comes into contact with three other cells, which, from the spheres being nearly of the same size, is very frequently and necessarily the case, the three flat surfaces are united into a pyramid; and this pyramid, as Huber has remarked, is manifestly a gross imitation of the three-sided pyramidal bases of the cell of the hive-bee. As in the cells of the hive-bee, so here, the three plane surfaces in any one cell necessarily enter into the construction of three adjoining cells. It is obvious that the Melipona saves wax by this manner of building; for the flat walls between the adjoining cells are not double, but are of the same thickness as the outer spherical portions, and yet each flat portion forms a part of two cells.

Reflecting on this case, it occurred to me that if the Melipona had made its spheres at some given distance from each other, and had made them of equal sizes, and had arranged them symmetrically in a double

layer, the resulting structure would probably have been as perfect as the comb of the hive-bee. Accordingly I wrote to Professor Miller, of Cambridge, and this geometer has kindly read over the following statement, drawn up from his information, and tells me that it is strictly correct:—

If a number of equal spheres be described with their centres placed in two parallel layers; with the centre of each sphere at the distance of radius × V 2, or radius x 1.41421 (or at some lesser distance), from the centres of the six surrounding spheres in the same layer; and at the same distance from the centres of the adjoining spheres in the other and parallel layer; then, if planes of intersection between the several spheres in both layers be formed, there will result a double layer of hexagonal prisms united together by pyramidal bases formed of three rhombs; and the rhombs and the sides of the hexagonal prisms will have every angle identically the same with the best measurements which have been made of the cells of the hive-bee.

Hence we may safely conclude that if we could slightly modify the instincts already possessed by the Melipona, and in themselves not very wonderful, this bee would make a structure as wonderfully perfect as that of the hive-bee. We must suppose the Melipona to make her cells truly spherical, and of equal sizes; and this would not be very surprising, seeing that she already does so to a certain extent, and seeing what perfectly cylindrical burrows in wood many insects can make, apparently by turning round on a fixed point. We must suppose the Melipona to arrange her cells in level layers, as she already does her cylindrical cells; and we must further suppose—and this is the greatest difficulty—that she can somehow judge accurately at what distance to stand from her fellow-labourers when several are making their spheres; but she is already so far enabled to judge of distance that she always describes her spheres so as to intersect largely; and then she unites the points of intersection by perfectly flat surfaces. We have further to suppose—but this is no difficulty—that after hexagonal prisms have been formed by the intersection of adjoining spheres in the same layer, she can prolong the hexagon to any length requisite to hold the stock of honey; in the same way as the rude humble-bee adds cylinders of wax to the circular mouths of her old cocoons. By such modifications of instincts in themselves not very wonderful—hardly

more wonderful than those which guide a bird to make its nest—I believe that the hive-bee has acquired, through natural selection, her inimitable architectural powers.

But this theory can be tested by experi-Following the example of Mr. Tegetmeier, I separated two combs, and put between them a long, thick, square strip of wax: the bees instantly began to excavate minute circular pits in it; and as they deepened these little pits, they made them wider and wider, until they were converted into shallow basins, appearing to the eye perfectly true or parts of a sphere, and of about the diameter of a cell. It was most interesting to me to observe that, wherever several bees had begun to excavate these basins near together, they had begun their work at such a distance from each other that by the time the basins had acquired the above stated width (i.e., about the width of an ordinary cell), and were in depth about one sixth of the diameter of the sphere of which they formed a part, the rims of the basins intersected or broke into each other. As soon as this occurred, the bees ceased to excavate, and began to build up flat walls of wax on the lines of intersection between the basins, so that each hexagonal prism was built upon the scalloped edge of a smooth basin, instead of on the straight edges of a three-sided pyramid, as in the case of ordinary cells.

I then put into the hive, instead of a thick, square piece of wax, a thin and narrow, knife-edged ridge, coloured with vermilion. The bees instantly began on both sides to excavate little basins near to each other, in the same way as before; but the ridge of wax was so thin that the bottoms of the basins, if they had been excavated to the same depth as in the former experiment, would have broken into each other from the opposite sides. The bees, however, did not suffer this to happen, and they stopped their excavations in due time; so that the basins, as soon as they had been a little deepened, came to have flat bottoms; and these flat bottoms, formed by thin little plates of the vermilion wax having been left ungnawed, were situated, as far as the eye could judge, exactly along the planes of imaginary intersection between the basins on the opposite sides of the ridge of wax. In parts only little bits, in other parts large portions of a rhombic plate, had been left between the opposed basins; but the work, from the unnatural state of The bees must have worked at very nearly the same rate on the opposite sides of the ridge of vermilion wax, as they circularly gnawed away and deepened the basins on both sides, in order to have succeeded in thus leaving flat plates between the basins, by stopping work along the intermediate

planes or planes of intersection.

Considering how flexible thin wax is, I do not see that there is any difficulty in the bees, while at work on the two sides of a strip of wax, perceiving when they have gnawed the wax away to the proper thinness, and then stopping their work. In ordinary combs it has appeared to me that the bees do not always succeed in working at exactly the same rate from the opposite sides; for I have noticed halfcompleted rhombs at the base of a justcommenced cell, which were slightly concave on one side, where I suppose that the bees had excavated too quickly, and convex on the opposed side, where the bees had worked less quickly. In one wellmarked instance I put the comb back into the hive, and allowed the bees to go on working for a short time, and again examined the cell; and I found that the rhombic plate had been completed, and had become perfectly flat: it was absolutely impossible, from the extreme thinness of the little rhombic plate, that they could have effected this by gnawing away the convex side; and I suspect that the bees in such cases stand in the opposed cells, and push and bend the ductile and warm wax (which, as I have tried, is easily done) into its proper intermediate plane, and thus flatten it.

From the experiment of the ridge of vermilion wax, we can clearly see that, if the bees were to build for themselves a thin wall of wax, they could make their cells of the proper shape, by standing at the proper distance from each other, by excavating at the same rate, and by endeavouring to make equal spherical hollows, but never allowing the spheres to break into each other. Now, bees, as may be clearly seen by examining the edge of a growing comb, do make a rough, circumferential wall or rim all round the comb; and they gnaw into this from the opposite sides, always working circularly as they deepen each cell. They do not make the whole threesided pyramidal base of any one cell at the same time, but only the one rhombic plate which stands on the extreme growing margin, or the two plates, as the case may

be; and they never complete the upper edges of the rhombic plates until the hexagonal walls are commenced. Some of these statements differ from those made by the justly celebrated elder Huber, but I am convinced of their accuracy; and, if I had space, I could show that they are conformable with mention and the space.

formable with my theory.

Huber's statement, that the very first cell is excavated out of a little parallel-sided wall of wax, is not, as far as I have seen, strictly correct, the first commencement having always been a little hood of wax; but I will not here enter on these details. We see how important a part excavation plays in the construction of the cells; but it would be a great error to suppose that the bees cannot build up a rough wall of wax in the proper position—that is, along the plane of intersection between two adjoining spheres. I have several specimens showing clearly that they can do this. Even in the rude circumferential rim or wall of wax round a growing comb flexures may sometimes be observed, corresponding in position to the planes of the rhombic basal plates of future cells. But the rough wall of wax has in every case to be finished off by being largely gnawed away on both sides. The manner in which the bees build is curious: they always make the first rough wall from ten to twenty times thicker than the excessively thin finished wall of the cell, which will ultimately be left. We shall understand how they work by supposing masons first to pile up a broad ridge of cement, and then to begin cutting it away equally on both sides near the ground till a smooth, very thin wall is left in the middle; the masons always piling up the cut-away cement, and adding fresh cement, on the summit of the ridge. We shall thus have a thin wall steadily growing upward, but always crowned by a gigantic coping. From all the cells, both those just commenced and those completed, being thus crowned by a strong coping of wax, the bees can cluster and crawl over the comb without injuring the delicate hexagonal walls, which are only about one fourhundredth of an inch in thickness, the plates of the pyramidal basis being about twice as thick. By this singular manner of building strength is continually given to the comb with the utmost ultimate economy of wax.

It seems at first to add to the difficulty of understanding how the cells are made that a multitude of bees all work together;

one bee after working a short time at one cell going to another, so that, as Huber has stated, a score of individuals work even at the commencement of the first cell. I was able practically to show this fact by covering the edges of the hexagonal walls of a single cell, or the extreme margin of the circumferential rim of a growing comb, with an extremely thin layer of melted vermilion wax; and I invariably found that the colour was most delicately diffused by the bees--as delicately as a painter could have done with his brushby atoms of the coloured wax having been taken from the spot on which it had been placed, and worked into the growing edges of the cells all round. The work of construction seems to be a sort of balance struck between many bees, all instinctively standing at the same relative distance from each other, all trying to sweep equal spheres, and then building up, or leaving ungnawed, the planes of intersection between these spheres. It was really curious to note in cases of difficulty, as when two pieces of comb met at an angle, how often the bees would pull down and rebuild in different ways the same cell, sometimes recurring to a shape which they had at first rejected.

When bees have a place on which they can stand in their proper positions for working-for instance, on a slip of wood, placed directly under the middle of a comb growing downwards, so that the comb has to be built over one face of the slip-in this case the bees can lay the foundations of one wall of a new hexagon, in its strictly proper place, projecting beyond the other completed cells. It suffices that the bees should be enabled to stand at their proper relative distances from each other and from the walls of the last completed cells, and then, by striking imaginary spheres, they can build up a wall intermediate between two adjoining spheres; but, as far as I have seen, they never gnaw away and finish off the angles of a cell till a large part both of that cell and of the adjoining cells has been built. This capacity in bees of laying down under certain circumstances a rough wall in its proper place between two just-commenced cells is important, as it bears on a fact, which seems at first quite subversive of the foregoing theory—namely, that the cells on the extreme margin of wasp-combs are sometimes strictly hexagonal; but I have not space here to enter on this subject. Nor does there seem to me any great difficulty in a single insect

(as in the case of a queen wasp) making hexagonal cells, if she work alternately on the inside and outside of two or three cells commenced at the same time, always standing at the proper relative distance from the parts of the cells just begun, sweeping spheres or cylinders, and building up intermediate planes. It is even conceivable that an insect might, by fixing on a point at which to commence a cell, and then moving outside, first to one point, and then to five other points, at the proper relative distances from the central point and from each other, strike the planes of intersection, and so make an isolated hexagon; but I am not aware that any such case has been observed; nor would any good be derived from a single hexagon being built, as in its construction more materials would be required than for a cylinder.

As natural selection acts only by the accumulation of slight modifications of structure or instinct, each profitable to the individual under its conditions of life, it may reasonably be asked how a long and graduated succession of modified architectural instincts, all tending towards the present perfect plan of construction, could have profited the progenitors of the hivebee? I think the answer is not difficult: it is known that bees are often hard pressed to get sufficient nectar; and I am informed by Mr. Tegetmeier that it has been experimentally found that no less than from twelve to fifteen pounds of dry sugar are consumed by a hive of bees for the secretion of each pound of wax; to that a prodigious quantity of fluid nectar must be collected and consumed by the bees in a hive for the secretion of the wax necessary for the construction of their combs. Moreover, many bees have to remain idle for many days during the process of secretion. A large store of honey is indispensable to support a large stock of bees during the winter; and the security of the hive is known mainly to depend on a large number of bees being supported. Hence the saving of wax by largely saving honey must be a most important element of success in any family of bees. Of course, the success of any species of bee may be dependent on the number of its parasites or other enemies, or on quite distinct causes, and so be altogether independent of the quantity of honey which the bees could collect. But let us suppose that this latter circumstance determined, as it probably often does determine, the numbers of a humblebee which could exist in a country; and

let us further suppose that the community lived throughout the winter, and consequently required a store of honey: there can, in this case, be no doubt that it would be an advantage to our humble-bee if a slight modification of her instinct led her to make her waxen cells near together, so as to intersect a little; for a wall in common, even to two adjoining cells, would save some little wax. Hence it would continually be more and more advantageous to our humble-bee if she were to make her cells more and more regular, nearer together, and aggregated into a mass, like the cells of the Melipona; for in this case a large part of the bounding surface of each cell would serve to bound other cells, and much wax would be saved. Again, from the same cause, it would be advantageous to the Melipona if she were to make her cells closer together, and more regular in every way than at present; for then, as we have seen, the spherical surfaces would wholly disappear, and would all be replaced by plane surfaces; and the Melipona would make a comb as perfect as that of the hive-bee. Beyond this stage of perfection in architecture natural selection could not lead; for the comb of the hive-bee, as far as we can see, is absolutely perfect in economising wax.

Thus, as I believe, the most wonderful of all known instincts, that of the hive-bee, can be explained by natural selection having taken advantage of numerous, successive, slight modifications of simpler. instincts: natural selection having by slow degrees, more and more perfectly, led the bees to sweep equal spheres at a given distance from each other in a double layer, and to build up and excavate the wax along the planes of intersection. bees, of course, no more knowing that they swept their spheres at one particular distance from each other than they know what are the several angles of the hexagonal prisms and of the basal rhombic plates. The motive power of the process of natural selection having been economy of wax; that individual swarm which wasted least honey in the secretion of wax having succeeded best, and having transmitted by inheritance its newly-acquired economical instinct to new swarms, which in their turn will have had the best chance of succeeding in the struggle for existence.

No doubt many instincts of very difficult explanation could be opposed to the theory of natural selection—cases in which

we cannot see how an instinct could possibly have originated; cases in which no intermediate gradations are known to exist; cases of instinct of apparently such trifling importance that they could hardly have been acted on by natural selection; cases of instincts almost identically the same in animals, so remote in the scale of nature that we cannot account for their similarity by inheritance from a common parent, and must therefore believe that they have been acquired by independent acts of natural selection. I will not here enter on these several cases, but will confine myself to one special difficulty, which at first appeared to me insuperable, and actually fatal to my whole theory. I allude to the neuters or sterile females in insect-communities; for these neuters often differ widely in instinct and in structure from both the males and fertile females, and yet, from being sterile, they cannot propa-

gate their kind.

The subject well deserves to be discussed at great length, but I will here take only a single case, that of working or sterile ants. How the workers have been rendered sterile is a difficulty; but not much greater than that of any other striking modification of structure; for it can be shown that some insects and other articulate animals in a state of nature occasionally become sterile; and if such insects had been social, and it had been profitable to the community that a number should have been annually born capable of work, but incapable of procreation, I can see no very great difficulty in this being effected by natural selection. But I must pass over this preliminary difficulty. The great difficulty lies in the working ants differing widely from both the males and the fertile females in structure, as in the shape of the thorax and in being destitute of wings and sometimes of eyes, and in instinct. As far as instinct alone is concerned, the prodigious difference in this respect between the workers and the perfect females would have been far better exemplified by the hive-bee. If a working ant or other neuter insect had been an animal in the ordinary state, I should have unhesitatingly assumed that all its characters had been slowly acquired through natural selection namely, by an individual having been born with some slight profitable modification of structure, this being inherited by its offspring, which again varied and were again selected, and so onwards. But with the working ant we have an insect differing

greatly from its parents, yet absolutely sterile; so that it could never have transmitted successively acquired modifications of structure or instinct to its progeny. It may well be asked, How is it possible to reconcile this case with the theory of

natural selection?

First, let it be remembered that we have innumerable instances, both in our domestic productions and in those in a state of nature, of all sorts of differences of structure which have become correlated to certain ages, and to either sex. We have differences correlated not only to one sex, but to that short period alone when the reproductive system is active, as in the nuptial plumage of many birds, and in the hooked jaws of the male salmon. We have even slight differences in the horns of different breeds of cattle in relation to an artificially imperfect state of the male sex; for oxen of certain breeds have longer horns than in other breeds, in comparison with the horns of the bulls or cows of these same breeds. Hence I can see no real difficulty in any character having become correlated with the sterile condition of certain members of insect-communities: the difficulty lies in understanding how such correlated modifications of structure could have been slowly accumulated by natural selection.

This difficulty, though appearing insuperable, is lessened, or, as I believe, disappears, when it is remembered that selection may be applied to the family, as well as to the individual, and may thus gain the desired end. Thus, a well-flavoured vegetable is cooked, and the individual is destroyed; but the horticulturist sows seeds of the same stock, and confidently expects to get nearly the same variety: breeders of cattle wish the flesh and fat to be well marbled together; the animal has been slaughtered, but the breeder goes with confidence to the same family. I have such faith in the powers of selection that I do not doubt that a breed of cattle, always yielding oxen with extraordinarily long horns, could be slowly formed by carefully watching which individual bulls and cows, when matched, produced oxen with the longest horns; and yet no one ox could ever have propagated its kind. Thus I believe it has been with social insects: a slight modification of structure, or instinct, correlated with the sterile condition of certain members of the community, has been advantageous to the community: consequently the fertile males and females of the same community flourished, and trans-

mitted to their fertile offspring a tendency to produce sterile members having the same modification. And I believe that this process has been repeated, until that prodigious amount of difference between the fertile and sterile females of the same species has been produced, which we see in many social insects.

But we have not as yet touched on the climax of the difficulty-namely, the fact that the neuters of several ants differ, not only from the fertile females and males, but from each other, sometimes to an almost incredible degree, and are thus divided into two or even three castes. The castes, moreover, do not generally graduate into each other, but are perfectly well defined; being as distinct from each other as are any two species of the same genus, or rather as any two genera of the same family. Thus in Eciton there are working and soldier neuters, with jaws and instincts extraordinarily different; in Cryptocerus the workers of one caste alone carry a wonderful sort of shield on their heads, the use of which is quite unknown; in the Mexican Myrmecocystus the workers of one caste never leave the nest—they arefed by the workers of another caste, and they have an enormously developed abdomen, which secretes a sort of honey, supplying the place of that excreted by the aphides, or the domestic cattle as they may be called, which our European ants guard

or imprison.

It will indeed be thought that I have an overweening confidence in the principle of natural selection when I do not admit that such wonderful and well-established facts at once annihilate my theory. In the simpler case of neuter insects all of one caste or of the same kind, which have been rendered by natural selection, as I believe to be quite possible, different from the fertile males and females—in this case we may safely conclude from the analogy of ordinary variations that each successive, slight, profitable modification did not probably at first appear in all the individual neuters in the same nest, but in a few alone; and that by the long-continued selection of the fertile parents which produced most neuters with the profitable modification, all the neuters ultimately came to have the desired character. On this view we ought occasionally to find neuter-insects of the same species, in the same nest, presenting gradations of structure; and this we do find, even often, considering how few neuterinsects out of Europe have been carefully

examined. Mr. F. Smith has shown how surprisingly the neuters of several British ants differ from each other in size, and sometimes in colour; and that the extreme forms can sometimes be perfectly linked together by individuals taken out of the same nest: I have myself compared perfect gradations of this kind. It often happens that the larger or the smaller sized workers are the most numerous; or that both large and small are numerous, with those of an intermediate size scanty in numbers. Formica flava has larger and smaller workers, with some of intermediate size; and in this species, as Mr. F. Smith has observed, the larger workers have simple eyes (ocelli), which, though small, can be plainly distinguished, whereas the smaller workers have their ocelli rudimentary. Having carefully dissected several specimens of these workers, I can affirm that the eyes are far more rudimentary in the smaller workers than can be accounted for merely by their proportionally lesser size; and I fully believe, though I dare not assert so positively, that the workers of intermediate size have their ocelli in an exactly intermediate condition. So that we here have two bodies of sterile workers in the same nest, differing not only in size, but in their organs of vision, yet connected by some few members in an intermediate condition. I may digress by adding that, if the smaller workers had been the most useful to the community, and those males and females had been continually selected, which produced more and more of the smaller workers, until all the workers had come to be in this condition; we should then have had a species of ant with neuters very nearly in the same condition with those of Myrmica. For the workers of Myrmica have not even rudiments of ocelli, though the male and female ants of this genus have welldeveloped ocelli.

I may give another case: so confidently did I expect to find gradations in important points of structure between the different castes of neuters in the same species that I gladly availed myself of Mr. F. Smith's offer of numerous specimens from the same nest of the driver ant (Anomma) of West Africa. The reader will perhaps best appreciate the amount of difference in these workers by my giving not the actual measurements, but a strictly accurate illustration: the difference was the same as if we were to see a set of workmen building a house of whom many were five feet four

inches high and many sixteen feet high; but we must suppose that the larger workmen had heads four instead of three times as big as those of the smaller men, and jaws nearly five times as big. The jaws, moreover, of the working ants of the several sizes differed wonderfully in shape, and in the form and number of the teeth. But the important fact for us is that, though the workers can be grouped into castes of different sizes, yet they graduate insensibly into each other, as does the widely-different structure of their jaws. I speak confidently on this latter point, as Mr. Lubbock made drawings for me with the camera lucida of the jaws which I had dissected from the workers of the several sizes.

With these facts before me, I believe that natural selection, by acting on the fertile parents, could form a species which should regularly produce neuters, either all of large size with one form of jaw, or all of small size with jaws having a widely different structure; or lastly, and this is our climax of difficulty, one set of workers of one size and structure, and simultaneously another set of workers of a different size and structure—a graduated series having been first formed, as in the case of the driver ant, and then the extreme forms, from being the most useful to the community, having been produced in greater and greater numbers through the natural selection of the parents which generated them, until none with an intermediate structure were produced.

Thus, as I believe, the wonderful fact of two distinctly defined castes of sterile workers existing in the same nest, both widely different from each other and from their parents, has originated. We can see how useful their production may have been to a social community of insects, on the same principle that the division of labour is useful to civilised man. As ants work by inherited instincts and by inherited organs or tools, and not by acquired knowledge and manufactured instruments, a perfect division of labour could be effected with them only by the workers being sterile; for, had they been fertile, they would have intercrossed, and their instincts and structure would have become blended. And nature has, as I believe, effected this admirable division of labour in the communities of ants by the means of natural selection. But I am bound to confess that, with all my faith in this principle, I should never have anticipated that natural selection

could have been efficient in so high a degree had not the case of these neuter insects convinced me of the fact. I have, therefore, discussed this case, at some little but wholly insufficient length, in order to show the power of natural selection, and likewise because this is by far the most serious special difficulty which my theory has encountered. The case, also, is very interesting, as it proves that with animals, as with plants, any amount of modification in structure can be effected by the accumulation of numerous, slight, and, as we must call them, accidental variations, which are in any manner profitable, without exercise or habit having coming into play. For no amount of exercise, or habit, or volition, in the utterly sterile members of a community could possibly affect the structure or instincts of the fertile members, which alone leave descendants. I am surprised that no one has advanced this demonstrative case of neuter insects against the wellknown doctrine of Lamarck.

Summary.—I have endeavoured briefly in this chapter to show that the mental qualities of our domestic animals vary, and that the variations are inherited. Still more briefly I have attempted to show that instincts vary slightly in a state of nature. No one will dispute that instincts are of the highest importance to each animal. Therefore, I can see no difficulty, under changing conditions of life, in natural selection accumulating slight modifications of instinct to any extent in any useful direction. In some cases habit or use and disuse have probably come into play. I do not pretend that the facts given in this chapter strengthen in any great degree my theory; but none of the cases of difficulty,

or recently and prome to reside any allegan to

- The contract of the contract

DEFECTION OF THE PROPERTY OF T

AND DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PERSO

THE RESERVE THE PARTY OF THE PERSON HEREITED

on the other hand, the fact that instincts are not always absolutely perfect, and are liable to mistakes—that no instinct has been produced for the exclusive good of other animals, but that each animal takes advantage of the instincts of others; that the canon in natural history, of "Natura non facit saltum," is applicable to instincts as well as to corporeal structure, and is plainly explicable on the foregoing views, but is otherwise inexplicable—all tend to corroborate the theory of natural selection.

This theory is, also, strengthened by some few other facts in regard to instincts; as by that common case of closely-allied, but certainly distinct, species, when inhabiting distant parts of the world and living under considerably different conditions of life, yet often retaining nearly the same instincts. For instance, we can understand, on the principle of inheritance, how it is that the thrush of South America lines its nest with mud in the same peculiar manner as does our British thrush; how it is that the male wrens (Troglodytes) of North America build "cock-nests" to roost in, like the males of our distinct Kittywrens—a habit wholly unlike that of any other known bird. Finally, it may not be a logical deduction, but to my imagination it is far more satisfactory to look at such instincts as the young cuckoo ejecting its. foster-brothers—ants making slaves—the larvæ of ichneumonidæ feeding within the live bodies of caterpillars—not as specially endowed or created instincts, but as small consequences of one general law, leading to the advancement of all organic beingsnamely, multiply, vary, let the strongest live and the weakest die.

THE STATE OF THE PERSON OF THE

CARLE FIRE THE TENED SELECTION OF THE PARTY OF THE PARTY

LANCE OF STOPPEN A PROPERTY OF THE PARTY OF

errogety and rightman is equipment and another

了是是"我们是不是"我们"的"我们"的"我们"的"我们"。"我们"的"我们","我们"的"我们","我们"的"我们","我们","我们","我们","我们","

DISTREMENDED DE LE CONTRACTOR DE LA CONT

CHAPTER VIII.

HYBRIDISM

Distinction between the sterility of first crosses and of hybrids--Sterility various in degree, not universal, affected by close inter-breeding, removed by domestication—Laws governing the sterility of hybrids—Sterility not a special endowment, but incidental on other differences -Causes of the sterility of first crosses and of hybrids-Parallelism between the effects of changed conditions of life and crossing-Fertility of varieties when crossed and of their mongrel offspring not universal-Hybrids and mongrels compared independently of their fertility—Summary.

THE view generally entertained by naturalists is that species, when intercrossed, have been specially endowed with the quality of sterility, in order to prevent the confusion of all organic forms. This view certainly seems at first probable, for species within the same country could hardly have kept distinct had they been capable of crossing freely. The importance of the fact that hybrids are very generally sterile has, I think, been much underrated by some late writers. On the theory of natural selection the case is especially important, inasmuch as the sterility of hybrids could not possibly be of any advantage to them, and therefore could not have been acquired by the continued preservation of successive profitable degrees of sterility. I hope, however, to be able to show that sterility is not a specially acquired or endowed quality, but is incidental on other acquired differences.

In treating this subject, two classes of facts, to a large extent fundamentally different, have generally been confounded together; namely, the sterility of two species when first crossed, and the sterility of the hybrids produced from them.

Pure species have of course their organs of reproduction in a perfect condition, yet when intercrossed they produce either few or no offspring. Hybrids, on the other hand, have their reproductive organs functionally impotent, as may be clearly seen in the state of the male element in both plants and animals; though the organs themselves are perfect in structure, as far as the microscope reveals. In the first case

the two sexual elements which go to form the embryo are perfect; in the second case they are either not at all developed, or are imperfectly developed. This distinction is important, when the cause of the sterility, which is common to the two cases, has to be considered. The distinction has probably been slurred over, owing to the sterility in both cases being looked on as a special endowment, beyond the province of our reasoning powers.

The fertility of varieties, that is of the forms known or believed to have descended from common parents, when intercrossed, and likewise the fertility of their mongrel offspring, is, on my theory, of equal importance with the sterility of species; for it seems to make a broad and clear distinc-

tion between varieties and species.

First, for the sterility of species when crossed and of their hybrid offspring. It is impossible to study the several memoirs and works of those two conscientious and admirable observers, Kölreuter and Gärtner, who almost devoted their lives to this subject, without being deeply impressed with the high generality of some degree of sterility. Kölreuter makes the rule universal; but then he cuts the knot, for in ten cases in which he found two forms, considered by most authors as distinct species, quite fertile together, he unhesitatingly ranks them as varieties. Gärtner, also, makes the rule equally universal; and he disputes the entire fertility of Kölreuter's ten cases. But in these and in many other cases Gärtner is obliged carefully to count the seeds, in order to show that there is any degree of sterility. He always compares the maximum number of seeds produced by two species when crossed, and by their hybrid offspring, with the average number produced by both pure parentspecies in a state of nature. But a serious cause of error seems to me to be here introduced: a plant to be hybridised must be castrated, and, what is often more important, must be secluded in order to prevent pollen being brought to it by insects from other plants. Nearly all the plants experimentised on by Gärtner were potted,

and apparently were kept in a chamber in his house. That these processes are often injurious to the fertility of a plant cannot be doubted; for Gärtner gives in his table about a score of cases of plants which he castrated, and artificially fertilised with their own pollen, and (excluding all cases such as the Leguminosæ, in which there is an acknowledged difficulty in the manipulation) half of these twenty plants had their fertility in some degree impaired. Moreover, as Gärtner during several years repeatedly crossed the primrose and cowslip, which we have such good reason to believe to be varieties, and only once or twice succeeded in getting fertile seed; as he found the common red and blue pimpernels (Anagallis arvensis and cœrulea), which the best botanists rank as varieties, absolutely sterile together; and as he came to the same conclusion in several other analogous cases, it seems to me that we may well be permitted to doubt whether many other species are really so sterile, when intercrossed, as Gärtner believes.

It is certain, on the one hand, that the sterility of various species when crossed is so different in degree, and graduates away so insensibly, and, on the other hand, that the fertility of pure species is so easily affected by various circumstances, that for all practical purposes it is most difficult to say where perfect fertility ends and sterility begins. I think no better evidence of this can be required than that the two most experienced observers who have ever lived -namely, Kölreuter and Gärtner-should have arrived at diametrically opposite conclusions in regard to the very same species. It is also most instructive to compare but I have not space here to enter on details—the evidence advanced by our best botanists on the question whether certain doubtful forms should be ranked as species or varieties with the evidence from fertility adduced by different hybridisers, or by the same author, from experiments made during different years. It can thus be shown that neither sterility nor fertility affords any clear distinction between species and varieties; but that the evidence from this source graduates away, and is doubtful in the same degree as is the evidence derived from other constitutional and structural differences.

In regard to the sterility of hybrids in successive generations; though Gärtner was enabled to rear some hybrids, carefully guarding them from a cross with either pure parents, for six or seven, and

in one case for ten generations, yet he asserts positively that their fertility never increased, but generally greatly decreased. I do not doubt that this is usually the case, and that the fertility often suddenly decreases in the first few generations. Nevertheless, I believe that in all these experiments the fertility has been diminished by an independent cause—namely, from close interbreeding. I have collected so large a body of facts, showing that close interbreeding lessens fertility, and, on the other hand, that an occasional cross with a distinct individual or variety increases fertility, that I cannot doubt the correctness of this almost universal belief among breeders. Hybrids are seldom raised by experimentalists in great numbers; and as the parent-species, or other allied hybrids, generally grow in the same garden, the visits of insects must be carefully prevented during the flowering season; hence hybrids will generally be fertilised during each generation by their own individual pollen; and I am convinced that this would be injurious to their fertility, already lessened by their hybrid origin. I am strengthened in this conviction by a remarkable statement repeatedly made by Gärtner-namely, that, if even the less fertile hybrids be artificially fertilised with hybrid pollen of the same kind, their fertility, notwithstanding the frequent ill effects of manipulation, sometimes decidedly increases, and goes on increasing. Now, in artificial fertilisation pollen is as often taken by chance (as I know from my own experience) from the anthers of another flower . as from the anthers of the flower itself which is to be fertilised; so that a cross between two flowers, though probably on the same plant, would be thus effected. Moreover, whenever complicated experiments are in progress, so careful an observer as Gärtner would have castrated his hybrids, and this would have insured in each generation a cross with a pollen from a distinct flower, either from the same plant or from another plant of the same hybrid nature. And thus the strange fact of the increase of fertility in the successive generations of artificially fertilised hybrids may, I believe, be accounted for by close interbreeding having been avoided.

Now let us turn to the results arrived at by the third most experienced hybridiser—namely, the Hon. and Rev. W. Herbert. He is as emphatic in his conclusion that some hybrids are perfectly fertile—as fertile

as the pure parent-species—as are Kölreuter and Gärtner that some degree of sterility between distinct species is a universal law of nature. He experimentised on some of the very same species as did Gärtner. The difference in their results may, I think, be in part accounted for by Herbert's great horticultural skill, and by his having hothouses at his command. Of his many important statements I will here give only a single one as an example—namely, that "every ovule in a pod of Crinum capense fertilised by C. revolutum produced a plant, which (he says) I never saw to occur in a case of its natural fecundation." So that we here have perfect, or even more than commonly perfect, fertility in a first cross between

two distinct species.

This case of the Crinum leads me to refer to a most singular fact—namely, that there are individual plants of certain species of Lobelia and of some other genera, which can be far more easily fertilised by the pollen of another and distinct species than by their own pollen; and all the individuals of nearly all the species of Hippeastrum seem to be in this predicament. For these plants have been found to yield seed to the pollen of a distinct species, though quite sterile with their own pollen, notwithstanding that their own pollen was found to be perfectly good, for it fertilised distinct species. So that certain individual plants and all the individuals of certain species can actually be hybridised much more readily than they can be self-fertilised! For instance, a bulb of Hippeastrum aulicum produced four flowers; three were fertilised by Herbert with their own pollen, and the fourth was subsequently fertilised by the pollen of a compound hybrid descended from three other and distinct species: the result was that "the ovaries of the three first flowers soon ceased to grow, and after a few days perished entirely, whereas the pod impregnated by the pollen of the hybrid made vigorous growth and rapid progress to maturity, and bore good seed, which vegetated freely." In a letter to me, in 1839, Mr. Herbert told me that he had then tried the experiment during five years, and he continued to try it during several subsequent years, and always with the same result. This result has also been confirmed by other observers in the case of Hippeastrum with its sub-genera, and in the case of some other genera, as Lobelia, Passiflora, and Verbascum. Although the

plants in these experiments appeared perfectly healthy, and although both the ovules and pollen of the same flower were perfectly good with respect to other species, yet, as they were functionally imperfect in their mutual self-action, we must infer that the plants were in an unnatural state. Nevertheless, these facts show on what slight and mysterious causes the lesser or greater fertility of species when crossed, in comparison with the same species when self-fertilised sometimes depends

self-fertilised, sometimes depends. The practical experiments of horticulturists, though not made with scientific precision, deserve some notice. It is notorious in how complicated a manner the species of Pelargonium, Fuchsia, Calceolaria, Petunia, Rhododendron, etc., have been crossed, yet many of these hybrids seed freely. For instance, Herbert asserts that a hybrid from Calceolaria integrifolia and plantaginea, species most widely dissimilar in general habit, "reproduced itself as perfectly as if it had been a natural species from the mountains of Chile." I have taken some pains to ascertain the degree of fertility of some of the complex crosses of Rhododendrons, and I am assured that many of them are perfectly fertile. Mr. C. Noble, for instance, informs me that he raises stocks for grafting from a hybrid between Rhod. Ponticum and Catawbiense, and that this hybrid "seeds as freely as it is possible to imagine." Had hybrids, when fairly treated, gone on decreasing in fertility in each successive generation, as Gärtner believes to be the case, the fact would have been notorious to nurserymen. Horticulturists raise large beds of the same hybrids, and such alone are fairly treated, for by insect agency the

In regard to animals, much fewer experiments have been carefully tried than with plants. If our systematic arrangements can be trusted—that is, if the genera of animals are as distinct from each other as are the genera of plants—then we may infer that animals more widely separated in the scale of nature can be more easily crossed than in the case of plants; but the

several individuals of the same hybrid

variety are allowed to freely cross with

each other, and the injurious influence

of close interbreeding is thus prevented.

Anyone may readily convince himself of

the efficiency of insect-agency by examining

the flowers of the more sterile kinds of

hybrid rhododendrons, which produce no

pollen, for he will find on their stigmas

hybrids themselves are, I think, more sterile. I doubt whether any case of a perfectly fertile hybrid animal can be considered as thoroughly well authenticated. It should, however, be borne in mind that, owing to few animals breeding freely under confinement, few experiments have been fairly tried: for instance, the canary-bird has been crossed with nine other finches, but, as not one of these nine species breeds freely in confinement, we have no right to expect that the first crosses between them and the canary, or that their hybrids, should be perfectly fertile. Again, with respect to the fertility in successive generations of the more fertile hybrid animals, I hardly know of an instance in which two families of the same hybrid have been raised at the same time from different parents, so as to avoid the ill effects of close interbreeding. On the contrary, brothers and sisters have usually been crossed in each successive generation, in opposition to the constantly repeated admonition of every breeder. And in this case it is not at all surprising that the inherent sterility in the hybrids should have gone on increasing. If we were to act thus, and pair brothers and sisters in the case of any pure animal, which from any cause had the least tendency to sterility, the breed would assuredly be lost in a very few generations.

Although I do not know of any thoroughly well-authenticated cases of perfectly fertile hybrid animals, I have some reason to believe that the hybrids from Cervulus vaginalis and Reevesii, and from Phasianus colchicus with P. torquatus and P. versicolor are perfectly fertile. There is no doubt that these three pheasants—namely, the common, the true ring-necked, and the Japan — intercross, and are becoming blended together in the woods of several parts of England. The hybrids from the common and Chinese geese (A. cygnoides), species, which are so different that they are generally ranked in distinct genera, have often bred in this country with either pure parent, and in one single instance they have bred inter se. This was effected by Mr. Eyton, who raised two hybrids from the same parents, but from different hatches; and from these two birds he raised no less than eight hybrids (grandchildren of the pure geese) from one nest. In India, however, these cross-bred geese must be far more fertile, for I am assured by two eminently capable judges-namely, Mr. Blyth and Captain Hutton—that whole flocks of these

crossed geese are kept in various parts of the country; and as they are kept for profit, where neither pure parent-species exists, they must certainly be highly fertile.

A doctrine which originated with Pallas . has been largely accepted by modern naturalists-namely, that most of our domestic animals have descended from two or more wild species, since commingled by intercrossing. On this view, the aboriginal species must either at first have produced quite fertile hybrids, or the hybrids must have become in subsequent generations quite fertile under domestication. latter alternative seems to me the most probable, and I am inclined to believe in its truth, although it rests on no direct evidence. I believe, for instance, that our dogs have descended from several wild stocks; yet, with perhaps the exception of certain indigenous domestic dogs of South America, all are quite fertile together; and analogy makes me greatly doubt whether the several aboriginal species would at first have freely bred together and have produced quite fertile hybrids. So, again, there is reason to believe that our European and the humped Indian cattle are quite fertile together; but, from facts communicated to me by Mr. Blyth, I think they must be considered as distinct species. On this view of the origin of many of our domestic animals, we must either give up the belief of the almost universal sterility of distinct species of animals when crossed, or we must look at sterility, not as an indelible characteristic, but as one capable of being removed by domestication.

Finally, looking to all the ascertained facts on the intercrossing of plants and animals, it may be concluded that some degree of sterility, both in first crosses and in hybrids, is an extremely general result, but that it cannot, under our present state of knowledge, be considered as absolutely universal.

Laws governing the Sterility of first Crosses and of Hybrids.—We will now consider a little more in detail the circumstances and rules governing the sterility of first crosses and of hybrids. Our chief object will be to see whether or not the rules indicate that species have specially been endowed with this quality, in order to prevent their crossing and blending together in utter confusion. The following rules and conclusions are chiefly drawn up from Gärtner's admirable work on the hybridisation of plants. I have taken

much pains to ascertain how far the rules apply to animals; and, considering how scanty our knowledge is in regard to hybrid animals, I have been surprised to find how generally the same rules apply to

both kingdoms.

It has been already remarked that the degree of fertility, both of first crosses and of hybrids, graduates from zero to perfect fertility. It is surprising in how many curious ways this gradation can be shown to exist; but only the barest outline of the facts can here be given. When pollen from a plant of one family is placed on the stigma of a plant of a distinct family, it exerts no more influence than so much inorganic dust. From this absolute zero of fertility the pollen of different species of the same genus, applied to the stigma of some one species, yields a perfect gradation in the number of seeds produced, up to nearly complete, or even quite complete, fertility; and, as we have seen, in certain abnormal cases, even to an excess of fertility beyond that which the plant's own pollen will produce. So in hybrids themselves there are some which never have produced, and probably never would produce, even with the pollen of either pure parent, a single fertile seed; but in some of these cases a first trace of fertility may be detected by the pollen of one of the pure parentspecies causing the flower of the hybrid to wither earlier than it otherwise would have done; and the early withering of the flower is well known to be a sign of incipient fertilisation. From this extreme degree of sterility we have self-fertilised hybrids producing a greater and greater number of seeds up to perfect fertility.

Hybrids from two species which are very difficult to cross, and which rarely produce any offspring, are generally very sterile; but the parallelism between the difficulty of making a first cross and the sterility of the hybrid thus produced—two classes of facts which are generally confounded together—is by no means strict. There are many cases in which two pure species can be united with unusual facility, and produce numerous hybrid-offspring; yet these hybrids are remarkably sterile. On the other hand, there are species which can be crossed very rarely, or with extreme difficulty; but the hybrids, when at last produced, are very fertile. Even within the limits of the same genus—for instance, in Dianthus—these two opposite cases

occur.

The fertility, both of first crosses and of

hybrids, is more easily affected by unfavourable conditions than is the fertility of pure species. But the degree of fertility is likewise innately variable; for it is not always the same when the same two species are crossed under the same circumstances, but depends in part upon the constitution of the individuals which happen to have been chosen for the experiment. So it is with hybrids, for their degree of fertility is often found to differ greatly in the several individuals raised from seed out of the same capsule and exposed to

exactly the same conditions.

By the term systematic affinity is meant the resemblance between species in structure and in constitution, more especially in the structure of parts which are of high physiological importance, and which differ little in the allied species. Now, the fertility of first crosses between species, and of the hybrids produced from them, is largely governed by their systematic affinity. This is clearly shown by hybrids never having been raised between species ranked by systematists in distinct families; and, on the other hand, by very closely-allied species generally uniting with facility. But the correspondence between systematic affinity and the facility of crossing is by no means strict. A multitude of cases could be given of very closely-allied species which will not unite, or only with extreme difficulty; and, on the other hand, of very distinct species which unite with the utmost facility. In the same family there may be a genus, as Dianthus, in which very many species can most readily be crossed; and another genus, as Silene, in which the most persevering efforts have failed to produce between extremely close species a single hybrid. Even within the limits of the same genus we meet with this same difference; for instance, the many species of Nicotiana have been more largely crossed than the species of almost any other genus; but Gärtner found that N. acuminata, which is not a particularly distinct species, obstinately failed to fertilise, or to be fertilised by, no less than eight other species of Nicotiana. Very many analogous facts could be given.

No one has been able to point out what kind, or what amount, of difference in any recognisable character is sufficient to prevent two species crossing. It can be shown that plants most widely different in habit and general appearance, and having strongly marked differences in every part of the flower, even in the pollen, in the fruit, and

in the cotyledons, can be crossed. Annual and perennial plants, deciduous and evergreen trees, plants inhabiting different stations and fitted for extremely different climates, can often be crossed with ease.

By a reciprocal cross between two species -I mean the case, for instance, of a stallionhorse being first crossed with a female-ass, and then a male-ass with a mare: these two species may then be said to have been reciprocally crossed. There is often the widest possible difference in the facility of making reciprocal crosses. Such cases are highly important, for they prove that the capacity in any two species to cross is often completely independent of their systematic affinity, or of any recognisable difference in their whole organisation. On the other hand, these cases clearly show that the capacity for crossing is connected with constitutional differences imperceptible by us, and confined to the reproductive system. This difference in the result of reciprocal crosses between the same two species was long ago observed by Kölreuter. To give an instance: Mirabilis jalapa can easily be fertilised by the pollen of M. longiflora, and the hybrids thus produced are sufficiently fertile; but Kölreuter tried more than two hundred times, during eight following years, to fertilise reciprocally M. longiflora with the pollen of M. jalapa, and utterly failed. Several other equally striking cases could be given. Thuret has observed the same fact with certain seaweeds or Fuci. Gärtner, moreover, found that this difference of facility in making reciprocal crosses is extremely common in a lesser degree. He has observed it even between forms so closely related (as Matthiola annua and glabra) that many botanists rank them only as varieties. It is also a remarkable fact that hybrids raised from reciprocal crosses, though, of course, compounded of the very same two species, the one species having first been used as the father and then as the mother, generally differ in fertility in a small, and occasionally in a high, degree.

Several other singular rules could be given from Gärtner: for instance, some species have a remarkable power of crossing with other species; other species of the same genus have a remarkable power of impressing their likeness on their hybrid offspring; but these two powers do not at all necessarily go together. There are certain hybrids which, instead of having, as is usual, an intermediate character between their two parents, always closely

resemble one of them; and such hybrids, though externally so like one of their pure parent-species, are with rare exceptions extremely sterile. So again among hybrids, which are usually intermediate in structure between their parents, exceptional and abnormal individuals sometimes are born, which closely resemble one of their pure parents; and these hybrids are almost always utterly sterile, even when the other hybrids raised from seed from the same capsule have a considerable degree of fertility. These facts show how completely fertility in the hybrid is independent of its external resemblance to either pure parent.

Considering the several rules now given, which govern the fertility of first crosses and of hybrids, we see that when forms, which must be considered as good and distinct species, are united, their fertility graduates from zero to perfect fertility, or even to fertility under certain conditions in excess. That their fertility, besides being eminently susceptible to favourable and unfavourable conditions, is innately variable. That it is by no means always the same in degree in the first cross and in the hybrids produced from this cross. That the fertility of hybrids is not related to the degree in which they resemble in external appearance either parent. And, lastly, that the facility of making a first cross between any two species is not always governed by their systematic affinity or degree of resemblance to each other. This latter statement is clearly proved by reciprocal crosses between the same two species, for, according as the one species or the other is used as the father or the mother, there is generally some difference, and occasionally the widest possible difference, in the facility of effecting an union. The hybrids, moreover, produced from reciprocal crosses often differ in fertility.

Now, do these complex and singular rules indicate that species have been endowed with sterility simply to prevent their becoming confounded in nature? I think not. For why should the sterility be so extremely different in degree, when various species are crossed, all of which we must suppose it would be equally important to keep from blending together? Why should the degree of sterility be innately variable in the individuals of the same species? Why should some species cross with facility, and yet produce very sterile hybrids; and other species cross with extreme difficulty, and yet produce fairly

fertile hybrids? Why should there often be so great a difference in the result of a reciprocal cross between the same two species? Why, it may even be asked, has the production of hybrids been permitted? To grant to species the special power of producing hybrids, and then to stop their further propagation by different degrees of sterility, not strictly related to the facility of the first union between their parents,

seems to be a strange arrangement. The foregoing rules and facts, on the other hand, appear to me clearly to indicate that the sterility both of first crosses and of hybrids is simply incidental or dependent on unknown differences, chiefly in the reproductive systems, of the species which are crossed. The differences being of so peculiar and limited a nature that, in reciprocal crosses between two species, the male sexual element of the one will often freely act on the female sexual element of the other, but not in a reversed direction. It will be advisable to explain a little more fully by an example what I mean by sterility being incidental on other differences, and not a specially endowed quality. As the capacity of one plant to be grafted or budded on another is so entirely unimportant for its welfare in a state of nature, I presume that no one will suppose that this capacity is a specially endowed quality, but will admit that it is incidental on differences in the laws of growth of the two plants. We can sometimes see the reason why one tree will not take on another, from differences in their rate of growth, in the hardness of their wood, in the period of the flow or nature of their sap, etc.; but in a multitude of cases we can assign no reason whatever. Great diversity in the size of two plants, one being woody and the other herbaceous, one being evergreen and the other deciduous, and adaptation to widely different climates, does not always prevent the two grafting together. As in hybridisation, so with grafting, the capacity is limited by systematic affinity, for no one has been able to graft trees together belonging to quite distinct families; and, on the other hand, closely allied species, and varieties of the same species, can usually, but not invariably, be grafted with ease. But this capacity, as in hybridisation, is by no means absolutely governed by systematic affinity. Although many distinct genera within the same family have been grafted together, in other cases species of the same genus will not take on each other.

The pear can be grafted far more readily on the quince, which is ranked as a distinct genus, than on the apple, which is a member of the same genus. Even different varieties of the pear take with different degrees of facility on the quince; so do different varieties of the apricot and peach on certain varieties of the plum.

As Gärtner found that there was sometimes an innate difference in different individuals of the same two species in crossing, so Sagaret believes this to be the case with different individuals of the same two species in being grafted together. As, in reciprocal crosses, the facility of effecting an union is often very far from equal, so it sometimes is in grafting; the common gooseberry, for instance, cannot be grafted on the currant, whereas the currant will take, though with difficulty, on the gooseberry.

We have seen that the sterility of hybrids, which have their reproductive organs in an imperfect condition, is a very different case from the difficulty of uniting two pure species, which have their reproductive organs perfect; yet these two distinct cases run to a certain extent parallel. Something analogous occurs in grafting; for Thouin found that three species of Robinia, which seeded freely on their own roots, and which could be grafted with no great difficulty on another species, when thus grafted were rendered barren. On the other hand, certain species of Sorbus, when grafted on other species, yielded twice as much fruit as when on their own roots. We are reminded by this latter fact of the extraordinary case of Hippeastrum, Lobelia, etc., which seeded much more freely when fertilised with the pollen of distinct species than when self-fertilised with their own pollen.

We thus see that, although there is a clear and fundamental difference between the mere adhesion of grafted stocks and the union of the male and female elements in the act of reproduction, yet that there is a rude degree of parallelism in the results of grafting and of crossing distinct species. And as we must look at the curious and complex laws governing the facility with which trees can be grafted on each other as incidental or unknown differences in their vegetative systems, so I believe that the still more complex laws governing the facility of first crosses are incidental on unknown differences chiefly in their reproductive systems. These differences, in both cases, follow to a certain extent, as might have been expected, systematic affinity, by which every kind of resemblance and dissimilarity between organic beings is attempted to be expressed. The facts by no means seem to me to indicate that the greater or lesser difficulty of either grafting or crossing together various species has been a special endowment; although in the case of crossing the difficulty is as important for the endurance and stability of specific forms as in the case of grafting it is unimportant for their welfare.

Causes of the Sterility of first Crosses and of Hybrids .- We may now look a little closer at the probable causes of the sterility of first crosses and of hybrids. These two cases are fundamentally different, for, as just remarked, in the union of two pure species the male and female sexual elements are perfect, whereas in hybrids they are imperfect. Even in first crosses the greater or lesser difficulty in effecting a union apparently depends on several distinct causes. There must sometimes be a physical impossibility in the male element reaching the ovule, as would be the case with a plant having a pistil too long for the pollen-tubes to reach the ovarium. It has also been observed that when pollen of one species is placed on the stigma of a distinctly allied species, though the pollen tubes protrude, they do not penetrate the stigmatic surface. Again, the male element may reach the female element, but be incapable of causing an embryo to be developed, as seems to have been the case with some of Thuret's experiments on Fuci. No explanation can be given of these facts, any more than why certain trees cannot be grafted on others. Lastly, an embryo may be developed, and then perish at an early period. This latter alternative has not been sufficiently attended to; but I believe, from observations communicated to me by Mr. Hewitt, who has had great experience in hybridising gallinaceous birds, that the early death of the embryo is a very frequent cause of sterility in first crosses. I was at first very unwilling to believe in this view, as hybrids, when once born, are generally healthy and long-lived, as we see in the case of the common mule. Hybrids, however, are differently circumstanced before and after birth: when born and living in a country where their two parents can live, they are generally placed under suitable conditions of life. But a hybrid partakes of only half of the nature and constitution of its mother, and therefore before birth, as

long as it is nourished within its mother's womb or within the egg or seed produced by the mother, it may be exposed to conditions in some degree unsuitable, and consequently be liable to perish at an early period; more especially as all very young beings seem eminently sensitive to injurious or unnatural conditions of life.

In regard to the sterility of hybrids, in which the sexual elements are imperfectly developed, the case is very different. I have more than once alluded to a large body of facts, which I have collected, showing that, when animals and plants are removed from their natural conditions, they are extremely liable to have their reproductive systems seriously affected. This, in fact, is the great bar to the domestication of animals. Between the sterility thus superinduced and that of hybrids there are many points of similarity. In both cases the sterility is independent of general health, and is often accompanied by excess of size or great luxuriance. In both cases the sterility occurs in various degrees; in both, the male element is the most liable to be affected, but sometimes the female more than the male. In both the tendency goes, to a certain extent, with systematic affinity, for whole groups of animals and plants are rendered impotent by the same unnatural conditions; and whole groups of species tend to produce sterile hybrids. On the other hand, one species in a group will. sometimes resist great changes of conditions. with unimpared fertility, and certain species in a group will produce unusually fertile hybrids. No one can tell, till he tries, whether any particular animal will breed under confinement or any exotic plant seed freely under culture; nor can he tell, till he tries, whether any two species of a genus. will produce more or less sterile hybrids. Lastly, when organic beings are placed during several generations under conditions not natural to them, they are extremely liable to vary, which is due, as I believe, to their reproductive systems having been specially affected, though in a lesser degree than when sterility ensues. So it is with hybrids, for hybrids in successive generations are eminently liable to vary, as every experimentalist has observed.

Thus we see that when organic beings are placed under new and unnatural conditions, and when hybrids are produced by the unnatural crossing of two species, the reproductive system, independently of the general state of health, is affected by sterility in a very similar manner. In the one case

the conditions of life have been disturbed, though often in so slight a degree as to be inappreciable by us; in the other case, or that of hybrids, the external conditions have remained the same, but the organisation has been disturbed by two different structures and constitutions having been blended into one. For it is scarcely possible that two organisations should be compounded into one without some disturbance occurring in the development, or periodical action, or mutual relation of the different parts and organs one to another, or to the conditions of life. When hybrids are able to breed inter se, they transmit to their offspring from generation to generation the same compounded organisation, and hence we need not be surprised that their sterility, though in some degree variable, rarely diminishes.

It must, however, be confessed that we cannot understand, excepting on vague hypotheses, several facts with respect to the sterility of hybrids; for instance, the unequal fertility of hybrids produced from reciprocal crosses; or the increased sterility in those hybrids which occasionally and exceptionally resemble closely either pure parent. Nor do I pretend that the foregoing remarks go to the root of the matter: no explanation is offered why an organism, when placed under unnatural conditions, is rendered sterile. All that I have attempted to show is that in two cases, in some respects allied, sterility is the common result—in the one case from the conditions of life having been disturbed, in the other case from the organisation having been disturbed by two organisations having been compounded into one.

It may seem fanciful, but I suspect that a similar parallelism extends to an allied yet very different class of facts. It is an old and almost universal belief, founded, I think, on a considerable body of evidence, that slight changes in the conditions of life are beneficial to all living things. We see this acted on by farmers and gardeners in their frequent exchanges of seeds, tubers, etc., from one soil or climate to another, and back again. During the convalescence of animals we plainly see that great benefit is derived from almost any change in the habits of life. Again, both with plants and animals, there is abundant evidence that a cross between very distinct individuals of the same species—that is, between members of different strains or sub-breeds—gives vigour and fertility to the offspring. I believe, indeed, from the facts alluded to in

our fourth chapter, that a certain amount of crossing is indispensable even with hermaphrodites; and that close interbreeding continued during several generations between the nearest relations, especially if these be kept under the same conditions of life, always induces weakness and sterility

in the progeny.

Hence it seems that, on the one hand, slight changes in the conditions of life benefit all organic beings, and, on the other hand, that slight crosses—that is, crosses between the males and females of the same species which have varied and become slightly different—give vigour and fertility to their offspring. But we have seen that greater changes, or changes of a particular nature, often render organic beings in some degree sterile; and that greater crossesthat is, crosses between males and females which have become widely or specifically different-produce hybrids which are generally sterile in some degree. I cannot persuade myself that this parallelism is an accident or an illusion. Both series of facts seem to be connected together by some common but unknown bond, which is essentially related to the principle of life.

Fertility of Varieties when crossed, and of their Mongrel offspring.—It may be urged, as a most forcible argument, that there must be some essential distinction between species and varieties, and that there must be some error in all the foregoing remarks, inasmuch as varieties, however much they may differ from each other in external appearance, cross with perfect facility, and yield perfectly fertile offspring. I fully admit that this is almost invariably the case. But if we look to varieties produced under nature, we are immediately involved in hopeless difficulties; for if two hitherto reputed varieties be found in any degree sterile together, they are at once ranked by most naturalists as species. For instance, the blue and red pimpernel, the primrose and cowslip, which are considered by many of our best botanists as varieties, are said by Gärtner not to be quite fertile when crossed, and he consequently ranks them as undoubted species. If we thus argue in a circle, the fertility of all varieties produced under nature will assuredly have to be granted.

If we turn to varieties, produced, or supposed to have been produced, under domestication, we are still involved in doubt. For when it is stated, for instance, that the German Spitz dog unites more

easily than other dogs with foxes, or that certain South American indigenous domestic dogs do not readily cross with European dogs, the explanation which will occur to every one, and probably the true one, is that these dogs have descended from severalaboriginally-distinct species. Nevertheless, the perfect fertility of so many domestic varieties, differing widely from each other in appearance—for instance, of the pigeon or of the cabbage—is a remarkable fact, more especially when we reflect how many species there are which, though resembling each other most closely, are utterly sterile when intercrossed. Several considerations, however, render the fertility of domestic varieties less remarkable than at first appears. It can, in the first place, be clearly shown that mere external dissimilarity between two species does not determine their greater or lesser degree of sterility when crossed, and we may apply the same rule to domestic varieties. In the second place, some eminent naturalists believe that a long course of domestication tends to eliminate sterility in the successive generations of hybrids which were at first only slightly sterile; and, if this be so, we surely ought not to expect to find sterility both appearing and disappearing under nearly the same conditions of life. Lastly, and this seems to me by far the most important consideration, new races of animals and plants are produced under domestication by man's methodical and unconscious power of selection, for his own use and pleasure: he neither wishes to select, nor could select, slight differences in the reproductive system, or other constitutional differences correlated with the reproductive system. He supplies his several varieties with the same food; treats them in nearly the same manner, and does not wish to alter their general habits of life. Nature acts uniformly and slowly during vast periods of time on the whole organisation, in any way which may be for each creature's own good; and thus she may, either directly or more probably indirectly, through correlation, modify the reproductive system in the several descendants from any one species. Seeing this difference in the process of selection, as carried on by man and nature, we need not be surprised at some difference in the result.

I have as yet spoken as if the varieties of the same species were invariably fertile when intercrossed. But it seems to me impossible to resist the evidence of the

existence of a certain amount of sterility in the few following cases, which I will briefly abstract. The evidence is, at least, as good as that from which we believe in the sterility of a multitude of species. The evidence is also derived from hostile witnesses, who in all other cases consider fertility and sterility as safe criterions of specific distinction. Gärtner kept, during several years, a dwarf kind of maize with yellow seeds, and a tall variety with red seeds, growing near each other in his garden; and, although these plants have separated sexes, they never naturally crossed. He then fertilised thirteen flowers of the one with the pollen of the other; but only a single head produced any seed, and this one head produced only five grains. Manipulation in this case could not have been injurious, as the plants have separated sexes. No one, I believe, has suspected that these varieties of maize are distinct species; and it is important to notice that the hybrid plants thus raised were themselves perfectly fertile; so that even Gärtner did not venture to consider the two varieties as specifically distinct.

Girou de Buzareingues crossed three varieties of gourd, which, like the maize, has separated sexes, and he asserts that their mutual fertilisation is by so much the less easy as their differences are greater. How far these experiments may be trusted I know not; but the forms experimentised on are ranked by Sagaret, who mainly founds his classification by the test of

infertility, as varieties.

The following case is far more remarkable, and seems at first quite incredible; but it is the result of an astonishing number of experiments made during many years on nine species of Verbascum by so good an observer and so hostile a witness as Gärtner-namely, that yellow and white varieties of the same species of Verbascum when intercrossed produce less seed than do either coloured varieties when fertilised with pollen from their own coloured flowers. Moreover, he asserts that, when yellow and white varieties of one species are crossed with yellow and white varieties of a distinct species, more seed is produced by the crosses between the similarly-coloured flowers than between those which are differently coloured. Yet these varieties of Verbascum present no other difference besides the mere colour of the flower; and one variety can sometimes be raised from the seed of the other.

From observations which I have made

on certain varieties of hollyhock, I am inclined to suspect that they present analo-

gous facts.

Kölreuter, whose accuracy has been confirmed by every subsequent observer, has proved the remarkable fact that one variety of the common tobacco is more fertile, when crossed with a widely distinct species, than are the other varieties. He experimentised on five forms, which are commonly reputed to be varieties, and which he tested by the severest trial-namely, by reciprocal crosses-and he found their mongrel offspring perfectly fertile. But one of these five varieties, when used either as father or mother, and crossed with the Nicotiana glutinosa, always yielded hybrids not so sterile as those which were produced from the four-other varieties when crossed with N. glutinosa. Hence the reproductive system of this one variety must have been in some manner and in some degree modified.

From these facts; from the great difficulty of ascertaining the infertility of varieties in a state of nature, for a supposed variety, if infertile in any degree, would generally be ranked as species; from man selecting only external characters in the production of the most distinct domestic varieties, and from not wishing or being able to produce recondite and functional differences in the reproductive system--from these several considerations and facts, I do not think that the very general fertility of varieties can be proved to be of universal occurrence, or to form a fundamental distinction between varieties and species. The general fertility of varieties does not seem to me sufficient to overthrow the view which I have taken with respect to the very general, but not invariable, sterility of first crosses and of hybrids--namely, that it is not a special endowment, but is incidental on slowlyacquired modifications, more especially in the reproductive systems of the forms which are crossed.

Hybrids and Mongrels compared, independently of their fertility.- Independently of the question of fertility, the offspring of species when crossed and of varieties when crossed may be compared in several other respects. Gärtner, whose strong wish was to draw a marked line of distinction between species and varieties, could find very few and, as it seems to me, quite unimportant differences between the so-called hybrid offspring of species and the so-called mongrel offspring of varieties. And, on the

other hand, they agree most closely in very

many important respects.

I shall here discuss this subject with extreme brevity. The most important distinction is that in the first generation mongrels are more variable than hybrids; but Gärtner admits that hybrids from species which have long been cultivated are often variable in the first generation; and I have myself seen striking instances of this fact. Gärtner further admits that hybrids between very closely-allied species are more variable than those from very distinct species; and this shows that the difference in the degree of variability graduates away. When mongrels and the more fertile hybrids are propagated for several generations, an extreme amount of variability in their offspring is notorious; but some few cases both of hybrids and mongrels long retaining uniformity of character could be given. The variability, however, in the successive generations of mongrels is, perhaps, greater than in hybrids.

This greater variability of mongrels than of hybrids does not seem to me at all surprising. For the parents of mongrels are varieties, and mostly domestic varieties (very few experiments having been tried on natural varieties), and this implies in most cases that there has been recent variability; and therefore we might expect that such variability would often continue and be super-added to that arising from the mere act of crossing. The slight degree of variability in hybrids from the first cross or in the first generation, in contrast with their extreme variability in the succeeding generations, is a curious fact and deserves attention. For it bears on and corroborates the view which I have taken on the cause of ordinary variability—namely, that it is due to the reproductive system being eminently sensitive to any change in the conditions of life, being thus often rendered either impotent or at least incapable of its proper function of producing offspring identical with the parent-form. Now, hybrids in the first generation are descended from species (excluding those long cultivated) which have not had their reproductive systems in any way affected, and they are not variable; but hybrids themselves have their reproductive systems seriously affected, and their descendants are highly variable.

But to return to our comparison of mongrels and hybrids: Gärtner states that mongrels are more liable than hybrids to revert to either parent-form; but this, if it degree. Gärtner further insists that when any two species, although most closely allied to each other, are crossed with a third species, the hybrids are widely different from each other; whereas, if two very distinct varieties of one species are crossed with another species, the hybrids do not differ much. But this conclusion, as far as I can make out, is founded on a single experiment, and seems directly opposed to the results of several experi-

ments made by Kölreuter.

These alone are the unimportant differences which Gärtner is able to point out between hybrid and mongrel plants. On the other hand, the resemblance in mongrels and in hybrids to their respective parents, more especially in hybrids produced from nearly-related species, follows, according to Gärtner, the same laws. When two species are crossed, one has sometimes a prepotent power of impressing its likeness on the hybrid; and so I believe it to be with varieties of plants. With animals one variety certainly often has this prepotent power over another variety. Hybrid plants produced from a reciprocal cross generally resemble each other closely; and so it is with mongrels from a reciprocal cross. Both hybrids and mongrels can be reduced to either pure parent-form by repeated crosses in successive generations with either parent.

These several remarks are apparently applicable to animals; but the subject is here excessively complicated, partly owing to the existence of secondary sexual characters, but more especially owing to prepotency in transmitting likeness running more strongly in one sex than in the other both when one species is crossed with another and when one variety is crossed with another variety. For instance, I think those authors are right who maintain that the ass has a prepotent power over the horse, so that both the mule and the hinny more resemble the ass than the horse; but that the prepotency runs more strongly in the male-ass than in the female, so that the mule, which is the offspring of the male-ass and mare, is more like an ass than is the hinny, which is the offspring of the female-ass and stallion.

Much stress has been laid by some authors on the supposed fact that mongrel animals alone are born closely like one of their parents; but it can be shown that this does sometimes occur with hybrids, yet, I grant, much less frequently with hybrids

than with mongrels. Looking to the cases which I have collected of cross-bred animals closely resembling one parent, the resemblances seem chiefly confined to characters almost monstrous in their nature, and which have suddenly appeared—such as albinism, melanism, deficiency of tail or horns, or additional fingers and toes—and do not relate to characters which have been slowly acquired by selection. Consequently, sudden reversions to the perfect character of either parent would be more likely to occur with mongrels, which are descended from varieties often suddenly produced and semi-monstrous in character, than with hybrids, which are descended from species slowly and naturally produced. On the whole, I entirely agree with Dr. Prosper Lucas, who, after arranging an enormous body of facts with respect to animals, comes to the conclusion that the laws of resemblance of the child to its parents are the same, whether the two parents differ much or little from each othernamely, in the union of individuals of the same variety, or of different varieties, or of distinct species.

Laying aside the question of fertility and sterility, in all other respects there seems to be a general and close similarity in the offspring of crossed species and of crossed varieties. If we look at species as having been specially created, and at varieties as having been produced by secondary laws, this similarity would be an astonishing fact. But it harmonises perfectly with the view that there is no essential distinction between species and

varieties.

Summary of Chapter.—First crosses between forms sufficiently distinct to be ranked as species, and their hybrids, are very generally, but not universally, sterile. The sterility is of all degrees, and is often so slight that the two most careful experimentalists who have ever lived have come to diametrically opposite conclusions in ranking forms by this test. The sterility is innately variable in individuals of the same species, and is eminently susceptible of favourable and unfavourable conditions. The degree of sterility does not strictly follow systematic affinity, but is governed by several curious and complex laws. It is generally different, and sometimes widely different, in reciprocal crosses between the same two species. It is not always equal in degree in a first cross and in the hybrid produced from this cross.

In the same manner as in grafting trees the capacity of one species or variety to take on another is incidental on generally unknown differences in their vegetative systems, so, in crossing, the greater or less facility of one species to unite with another is incidental on unknown differences in their reproductive systems. There is no more reason to think that species have been specially endowed with various degrees of sterility to prevent them crossing and blending in nature than to think that trees have been specially endowed with various and somewhat analogous degrees of difficulty in being grafted together in order to prevent them becoming inarched in our forests.

The sterility of first crosses between pure species, which have their reproductive organs perfect, seems to depend on several circumstances—in some cases, largely on the early death of the embryo. The sterility of hybrids, which have their reproductive systems imperfect, and which have had this system and their whole organisation disturbed by being compounded of two distinct species, seems closely allied to that sterility which so frequently affects pure species, when their natural conditions of life have been disturbed. This view is supported by a parallelism of another kind -namely, that the crossing of forms only slightly different is favourable to the vigour and fertility of their offspring; and that slight changes in the conditions of life are apparently favourable to the vigour and fertility of all organic beings. It is not surprising that the degree of difficulty in

uniting two species, and the degree of sterility of their hybrid-offspring should generally correspond, though due to distinct causes, for both depend on the amount of difference of some kind between the species which are crossed. Nor is it surprising that the facility of effecting a first cross, the fertility of the hybrids produced from it, and the capacity of being grafted together—though this latter capacity evidently depends on widely different circumstances-should all run, to a certain extent, parallel with the systematic affinity of the forms which are subjected to experiment; for systematic affinity attempts to express all kinds of resemblance between all species.

First crosses between forms known to be varieties, or sufficiently alike to be considered as varieties, and their mongrel offspring, are very generally, but not quite universally, fertile. Nor is this nearly general and perfect fertility surprising when we remember how liable we are to argue in a circle with respect to varieties in a state of nature, and when we remember that the greater number of varieties have been produced under domestication by the selection of mere external differences, and not of differences in the reproductive system. In all other respects, excluding fertility, there is a close general resemblance between hybrids and mongrels. Finally, then, the facts briefly given in this chapter do not seem to me opposed to, but even rather to support, the view that there is no fundamental distinction between species and varieties.

THE PROPERTY AND REPORTED THE PROPERTY AND A SECTION OF THE PARTY.

CHAPTER IX.

A CAR THE REPORT OF THE PERSON OF THE RESIDENCE OF THE LEGISLES OF THE PARTY OF THE

ON THE IMPERFECTION OF THE GEOLOGICAL RECORD

On the absence of intermediate varieties at the present day—On the nature of extinct intermediate varieties; on their number-On the vast lapse of time, as inferred from the rate of deposition and of denudation-On the poorness of our palæontological collections-On the intermittence of geological formations

-On the absence of intermediate varieties in any one formation—On the sudden appearance of groups of species-On their sudden appearance in the lowest known fossiliferous strata.

IN the sixth chapter I enumerated the chief

objections which might be justly urged against the views maintained in this volume. Most of them have now been discussed. One-namely, the distinctness of specific forms, and their not being blended together by innumerable transitional links—is a very obvious difficulty. I assigned reasons why such links do not commonly occur at the present day, under the circumstances apparently most favourable for their presence namely, on an extensive and continuous area with graduated physical conditions. I endeavoured to show that the life of each species depends in a more important manner on the presence of other already defined organic forms than on climate; and, therefore, that the really governing conditions of life do not graduate away quite insensibly, like heat or moisture. I endeavoured also to show that intermediate varieties, from existing in lesser numbers than the forms which they connect, will generally be beaten out and exterminated during the course of further modification and improvement. The main cause, however, of innumerable intermediate links not now occurring everywhere throughout nature depends on the very process of natural selection, through which new varieties continually take the places of and exterminate their parent-forms. But just in proportion as this process of extermination has acted on an enormous scale, so must the number of intermediate varieties which have formerly existed on the earth be truly enormous. Why, then, is not every geological formation and every stratum full of such intermediate links? Geology assuredly does not reveal any such finelygraduated organic chain; and this, perhaps, is the most obvious and gravest objection which can be urged against my theory. The explanation lies, as I believe, in the extreme imperfection of the geological record.

In the first place, it should always be borne in mind what sort of intermediate forms must, on my theory, have formerly existed. I have found it difficult, when looking at any two species, to avoid picturing to myself forms directly intermediate between them. But this is a wholly false view: we should always look for forms intermediate between each species and a common but unknown progenitor; and the progenitor will generally have differed in some respects from all its modified descendants. To give a simple illustration: the fantail and pouter pigeons have both descended from the rock-pigeon; if we pos-

sessed all the intermediate varieties which have ever existed, we should have an extremely close series between both and the rock-pigeon; but we should have no varieties directly intermediate between the fantail and pouter-none, for instance, combining a tail somewhat expanded, with a crop somewhat enlarged, the characteristic features of these two breeds. These two breeds, moreover, have become so much modified that, if we had no historical or indirect evidence regarding their origin, it would not have been possible to have determined, from a mere comparison of their structure with that of the rock-pigeon, whether they had descended from this species or from some other allied species, such as C. oenas.

So with natural species, if we look to forms very distinct—for instance, to the horse and tapir—we have no reason to suppose that links ever existed directly intermediate between them, but between each and an unknown common parent. The common parent will have had in its whole organisation much general resemblance to the tapir and to the horse, but in some points of structure may have differed considerably from both, even perhaps more than they differ from each other. Hence, in all such cases we should be unable to recognise the parent-form of any two or more species, even if we closely compared the structure of the parent with that of its modified descendants, unless at the same time we had a nearly perfect chain of the intermediate links.

It is just possible, by my theory, that one of two living forms might have descended from the other—for instance, a horse from a tapir; and in this case direct intermediate links will have existed between them. But such a case would imply that one form had remained for a very long period unaltered, while its descendants had undergone a vast amount of change; and the principle of competition between organism and organism, between child and parent, will render this a very rare event, for in all cases the new and improved forms of life tend to supplant the old and unimproved forms.

By the theory of natural selection all living species have been connected with the parent-species of each genus, by differences not greater than we see between the varieties of the same species at the present day; and these parent-species, now generally extinct, have in their turn been similarly connected with more ancient species; and

so on backwards, always converging to the common ancestor of each great class. So that the number of intermediate and transitional links, between all living and extinct species, must have been inconceivably great. But assuredly, if this theory be true, such have lived upon this earth.

On the lapse of Time.—Independently of our not finding fossil remains of such infinitely numerous connecting-links, it may be objected that time will not have sufficed for so great an amount of organic change, all changes having been effected very slowly through natural selection. It is hardly possible for me even to recall to the reader, who may not be a practical geologist, the facts leading the mind freely to comprehend the lapse of time. He who can read Sir Charles Lyell's grand work on the Principles of Geology, which the future historian will recognise as having produced a revolution in natural science, yet does not admit how incomprehensively vast have been the past periods of time, may at once close this volume. Not that it suffices to study the Principles of Geology, or to read special treatises by different observers on separate formations, and to mark how each author attempts to give an inadequate idea of the duration of each formation, or even each stratum. A man must for years examine for himself great piles of superimposed strata, and watch the sea at work grinding down old rocks and making fresh sediment, before he can hope to comprehend anything of the lapse of time, the monuments of which we see around us.

It is good to wander along lines of seacoast, when formed of moderately hard rocks, and mark the process of degradation. The tides in most cases reach the cliffs only for a short time twice a day, and the waves eat into them only when they are charged with sand or pebbles; for there is good evidence that pure water can effect little or nothing in wearing away rock. At last the base of the cliff is undermined, huge fragments fall down, and these, remaining fixed, have to be worn away, atom by atom, until reduced in size they can be rolled about by the waves, and then are more quickly ground into pebbles, sand, or mud. But how often do we see along the bases of retreating cliffs rounded boulders, all thickly clothed by marine productions, showing how little they are abraded and how seldom they are rolled about! Moreover, if we follow for a few

miles any line of rocky cliff which is undergoing degradation, we find that it is only here and there, along a short length or round a promontory, that the cliffs are at the present time suffering. The appearance of the surface and the vegetation show that elsewhere years have elapsed since the waters washed their base.

He who most closely studies the action of the sea on our shores will, I believe, be most deeply impressed with the slowness with which rocky coasts are worn away. The observations on this head by Hugh Miller, and by that excellent observer, Mr. Smith, of Jordan Hill, are most impressive. With the mind thus impressed, let anyone examine beds of conglomerate many thousand feet in thickness, which, though probably formed at a quicker rate than many other deposits, yet, from being formed of worn and rounded pebbles, each of which bears the stamp of time, are good to show how slowly the mass has been accumulated. In the Cordillera I estimated one pile of conglomerate at ten thousand feet in thickness. Let the observer remember Lyell's profound remark, that the thickness and extent of sedimentary formations are the result and measure of the degradation which the earth's crust has elsewhere suffered. And what an amount of degradation is implied by the sedimentary deposits of many countries! Professor Ramsay has given me the maximum thickness, in most cases from actual measurement, in a few cases from estimate, of each formation in different part of Great Britain; and this is the result :-

Palæozoic strata (not	including	Feet.
igneous beds)		57,154
Secondary strata	!!	13,190
Tertiary strata		2,240

-making altogether 72,584 feet; that is, very nearly thirteen and three-quarters British miles. Some of the formations, which are represented in England by thin beds, are thousands of feet in thickness on the continent. Moreover, between each successive formation we have, in the opinion of most geologists, enormously-long blank periods. So that the lofty pile of sedimentary rocks in Britain gives but an inadequate idea of the time which has elapsed during their accumulation; yet what time this must have consumed! Good observers have estimated that sediment is deposited by the great Mississippi river at the rate of only 600 feet in a hundred thousand years. This estimate

has no pretension to strict exactness; yet, considering over what wide spaces very fine sediment is transported by the currents of the sea, the process of accumulation in any one area must be extremely slow.

But the amount of denudation which the strata have in many places suffered, independently of the rate of accumulation of the degraded matter, probably offers the best evidence of the lapse of time. I remember having been much struck with the evidence of denudation, when viewing volcanic islands, which have been worn by the waves and pared all round into perpendicular cliffs of one or two thousand feet in height; for the gentle slope of the larvastreams, due to their former liquid state, showed at a glance how far the hard, rocky beds had once extended into the open ocean. The same story is still more plainly told by faults-those great cracks along which the strata have been upheaved on one side, or thrown down on the other, to the height or depth of thousands of feet; for, since the crust cracked, the surface of the land has been so completely planed down by the action of the sea that no trace of these vast dislocations is externally visible.

The Craven fault, for instance, extends for upwards of 30 miles, and along this line the vertical displacement of the strata has varied from 600 to 3,000 feet. Professor Ramsay has published an account of a downthrow in Anglesea of 2,300 feet; and he informs me that he fully believes there is one in Merionethshire of 12,000 feet; yet in these cases there is nothing on the surface to show such prodigious movements, the pile of rocks on the one or other side having been smoothly swept away. The consideration of these facts impresses · my mind almost in the same manner as does the vain endeavour to grapple with the idea of eternity.

I am tempted to give one other case, the well-known one of the denudation of the Weald. Though it must be admitted that the denudation of the Weald has been a mere trifle, in comparison with that which has removed masses of our palæozoic strata, in parts ten thousand feet in thickness, as shown in Professor Ramsay's masterly memoir on this subject; yet it is an admirable lesson to stand on the intermediate hilly country and look on the one hand at the North Downs, and on the other hand at the South Downs; for, remembering that at no great distance to the west the northern and southern escarp-

ments meet and close, one can safely picture to oneself the great dome of rocks which must have covered up the Weald within so limited a period as since the latter part of the Chalk formation. The distance from the northern to the southern Downs is about 22 miles, and the thickness of the several formations is on an average about 1,100 feet, as I am informed by Professor Ramsay. But if, as some geologists suppose, a range of older rocks underlies the Weald, on the flanks of which the overlying sedimentary deposits might have accumulated in thinner masses than elsewhere, the above estimate would be erroneous; but this source of doubt probably would not greatly affect the estimate as applied to the western extremity of the district. If, then, we knew the rate at which the sea commonly wears away a line of cliff of any given height, we could measure the time requisite to have denuded the Weald. This, of course, cannot be done; but we may, in order to form some crude notion on the subject, assume that the sea would eat into cliffs 500 feet in height at the rate of one inch in a century. This will at first appear much too small an allowance; but it is the same as if we were to assume a cliff one yard in height to be eaten back along a whole line of coast at the rate of one yard in nearly every twentytwo years. I doubt whether any rock, even as soft as chalk, would yield at this rate excepting on the most exposed coasts; though no doubt the degradation of a lofty cliff would be more rapid from the breakage of the falling fragments. On the other hand, I do not believe that any line of coast, ten or twenty miles in length, ever suffers degradation at the same time along its whole indented length; and we must remember that almost all strata contain harder layers or nodules, which from long resisting attrition form a breakwater at the base. We may at least confidently believe that no rocky coast 500 feet in height commonly yields at the rate of a foot per century; for this would be the same in amount as a cliff one yard in height retreating twelve yards in twenty-two years; and no one, I think, who has carefully observed the shape of old fallen fragments at the base of cliffs will admit any near approach to such rapid wearing away. Hence, under ordinary circumstances, I should infer that for a cliff 500 feet in height a denudation of one inch per century for the whole length would be a sufficient allowance. At this rate, on the above data, the

denudation of the Weald must have required 306,662,400 years; or say three hundred million years. But perhaps it would be safer to allow two or three inches per century, and this would reduce the number of years to one hundred and fifty

or one hundred million years.

The action of fresh water on the gently inclined Wealden district, when upraised, could hardly have been great, but it would somewhat reduce the above estimate. On the other hand, during oscillations of level, which we know this area has undergone, the surface may have existed for millions of years as land, and thus have escaped the action of the sea: when deeply submerged for perhaps equally long periods, it would, likewise, have escaped the action of the coast-waves. So that it is not improbable that a longer period than 300 million years has elapsed since the latter part of the Secondary period.

I have made these few remarks because it is highly important for us to gain some notion, however imperfect, of the lapse of years. During each of these years, over the whole world, the land and the water has been peopled by hosts of living forms. What an infinite number of generations, which the mind cannot grasp, must have succeeded each other in the long roll of years! Now turn to our richest geological museums, and what a paltry display we behold!

On the poorness of our Palæontological collections.—That our palæontological collections are very imperfect is admitted by every one. The remark of that admirable palæontologist, the late Edward Forbes, should not be forgotten-namely, that numbers of our fossil species are known and named from single and often broken specimens, or from a few specimens collected on some one spot. Only a small portion of the surface of the earth has been geologically explored, and no part with sufficient care, as the important discoveries made every year in Europe prove. No organism wholly soft can be preserved. Shells and bones will decay and disappear when left on the bottom of the sea, where sediment is not accumulating. I believe we are continually taking a most erroneous view when we tacitly admit to ourselves that sediment is being deposited over nearly the whole bed of the sea at a rate sufficiently quick to embed and preserve fossil remains. Throughout an enormously large proportion of the ocean the bright blue tint of the water bespeaks its purity.

The many cases on record of a formation conformably covered, after an enormous interval of time, by another and later formation, without the underlying bed having suffered in the interval any wear and tear, seem explicable only on the view of the bottom of the sea not rarely lying for ages in an unaltered condition. The remains which do become embedded, if in sand or gravel, will, when the beds are upraised, generally be dissolved by the percolation of rain-water. I suspect that but few of the very many animals which live on the beach between high and low watermark are preserved. For instance, the several species of the Chthamalinæ (a sub-family of sessile cirripedes) coat the rocks all over the world in infinite numbers: they are all strictly littoral, with the exception of a single Mediterranean species, which inhabits deep water and has been found fossil in Sicily, whereas not one other species has hitherto been found in any tertiary formation; yet it is now known that the genus Chthamalus existed during the chalk period. The molluscan genus Chiton offers a partially analogous case.

With respect to the terrestrial productions which lived during the Secondary and Palæozoic periods, it is superfluous to state that our evidence from fossil remains is fragmentary in an extreme degree. For instance, not a land shell is known belonging to either of these vast periods, with the exception of one species discovered by Sir C. Lyell and Dr. Dawson in the carboniferous strata of North America, of which shell several specimens have now been collected. In regard to mammiferous remains, a single glance at the historical table published in the Supplement to Lyell's Manual will bring home the truth, how accidental and rare is their preservation, far better than pages of detail. Nor is their rarity surprising when we remember how large a proportion of the bones of tertiary mammals have been discovered either in caves or in lacustrine deposits; and that not a cave or true lacustrine bed is known belonging to the age of our secondary or palæozoic formations.

But the imperfection in the geological record mainly results from another and more important cause than any of the foregoing-namely, from the several formations being separated from each other by wide intervals of time. When we see the formations tabulated in written works, or when we follow them in nature, it is difficult to avoid believing that they are closely

consecutive. But we know, for instance, from Sir R. Murchison's great work on Russia, what wide gaps there are in that country between the superimposed formations; so it is in North America, and in many other parts of the world. The most skilful geologist, if his attention had been exclusively confined to these large territories, would never have suspected that during the periods which were blank and barren in his own country great piles of sediment, charged with new and peculiar forms of life, had elsewhere been accumulated. And if in each separate territory hardly any idea can be formed of the length of time which has elapsed between the consecutive formations, we may infer that this could nowhere be ascertained. The frequent and great changes in the mineralogical composition of consecutive formations, generally implying great changes in the geography of the surrounding lands, whence the sediment has been derived, accords with the belief of vast intervals of time having elapsed between each formation.

But we can, I think, see why the geological formations of each region are almost invariably intermittent -- that is, have not followed each other in close sequence. Scarcely any fact struck me more, when examining many hundred miles of the South American coasts, which have been upraised several hundred feet within the recent period, than the absence of any recent deposits sufficiently extensive to last for even a short geological period. Along the whole west coast, which is inhabited by a peculiar marine fauna, tertiary beds are so poorly developed that no record of several successive and peculiar marine faunas will probably be preserved to a distant age. A little reflection will explain why along the rising coast of the western side of South America no extensive formations with recent or tertiary remains can anywhere be found, though the supply of sediment must for ages have been great, from the enormous degradation of the coast-rocks and from muddy streams entering the sea. The explanation, no doubt, is that the littoral and sub-littoral deposits are continually worn away as soon as they are brought up by the slow and gradual rising of the land within the grinding action of the coast-waves.

We may, I think, safely conclude that sediment must be accumulated in extremely thick, solid, or extensive masses, in order to withstand the incessant action of the

waves when first upraised and during subsequent oscillations of level. Such thick and extensive accumulations of sediment may be formed in two ways-either, in profound depths of the sea, in which case, judging from the researches of E. Forbes, we may conclude that the bottom will be inhabited by extremely few animals, and the mass, when upraised, will give a most imperfect record of the forms of life which then existed; or sediment may be accumulated to any thickness and extent over a shallow bottom, if it continue slowly. to subside. In this latter case, as long as the rate of subsidence and supply of sediment nearly balance each other, the sea will remain shallow and favourable for life, and thus a fossiliferous formation thick enough, when upraised, to resist any amount of degradation may be formed.

I am convinced that all our ancient formations which are rich in fossils have thus been formed during subsidence. Since publishing my views on this subject in 1845, I have watched the progress of Geology, and have been surprised to note how author after author, in treating of this or that great formation, has come to the conclusion that it was accumulated during subsidence. I may add that the only ancient tertiary formation on the west coast of South America which has been bulky enough to resist such degradation as it has as yet suffered, but which will hardly last to a distant geological age, was certainly deposited during a downward oscillation of level, and thus gained considerable thickness.

All geological facts tell us plainly that each area has undergone numerous slow oscillations of level, and apparently these oscillations have affected wide spaces. Consequently, formations rich in fossils, and sufficiently thick and extensive to resist subsequent degradation, may have been formed over wide spaces during periods of subsidence, but only where the supply of sediment was sufficient to keep the sea shallow and to embed and preserve the remains before they had time to decay. On the other hand, as long as the bed of the sea remained stationary, thick deposits could not have been accumulated in the shallow parts, which are the most favourable to life. Still less could this have happened during the alternate periods of elevation; or, to speak more accurately, the beds which were then accumulated will have been destroyed by being upraised and brought within the limits of the coastaction. the subject to colver by occurren

Thus the geological record will almost necessarily be rendered intermittent. I feel much confidence in the truth of these views, for they are in strict accordance with the general principles inculcated by Sir C. Lyell; and E. Forbes subsequently but independently arrived at a similar conclusion.

One remark is here worth a passing notice. During periods of elevation the area of the land and of the adjoining shoal parts of the sea will be increased, and new stations will often be formed—all circumstances most favourable, as previously explained, for the formation of new varieties and species; but during such periods there will generally be a blank in the geological record. On the other hand, during subsidence the inhabited area and number of inhabitants will decrease (excepting the productions on the shores of a continent when first broken up into an archipelago), and consequently during subsidence, though there will be much extinction, fewer new varieties or species will be formed; and it is during these very periods of subsidence that our great deposits rich in fossils have been accumulated. Nature may almost be said to have guarded against the frequent discovery of her transitional or linking forms.

From the foregoing considerations it cannot be doubted that the geological record, viewed as a whole, is extremely imperfect; but if we confine our attention to any one formation, it becomes more difficult to understand why we do not therein find closely graduated varieties between the allied species which lived at its commencement and at its close. Some cases are on record of the same species presenting distinct varieties in the upper and lower parts of the same formation; but, as they are rare, they may be here passed over. Although each formation has indisputably required a vast number of years for its deposition, I can see several reasons why each should not include a graduated series of links between the species which then lived; but I can by no means pretend to assign due proportional weight to the

following considerations.

Although each formation may mark a very long lapse of years, each perhaps is short compared with the period requisite to change one species into another. I am aware that two palæontologists, whose opinions are worthy of much deferencenamely, Bronn and Woodward, have concluded that the average duration of each formation is twice or thrice as long as the

average duration of specific forms. But insuperable difficulties, as it seems to me, prevent us coming to any just conclusion on this head. When we see a species first appearing in the middle of any formation, it would be rash in the extreme to infer that it had not elsewhere previously existed. So again, when we find a species disappearing before the uppermost layers have been deposited, it would be equally rash to suppose that it then became wholly extinct. We forget how small the area of Europe is compared with the rest of the world; nor have the several stages of the same formation throughout Europe been correlated

with perfect accuracy.

With marine animals of all kinds, we may safely infer a large amount of migration during climatal and other changes; and when we see a species first appearing in any formation, the probability is that it only then first immigrated into that area. It is well known, for instance, that several species appeared somewhat earlier in the palæozoic beds of North America than in those of Europe; time having apparently been required for their migration from the American to the European seas. In examining the latest deposits of various quarters of the world, it has everywhere been noted that some few still existing species are common in the deposit, but have become extinct in the immediately surrounding sea; or, conversely, that some are now abundant in the neighbouring sea, but are rare or absent in this particular deposit. It is an excellent lesson to reflect on the ascertained amount of migration of the inhabitants of Europe during the Glacial period, which forms only a part of one whole geological period; and likewise to reflect on the great changes of level, on the inordinately great change of climate, on the prodigious lapse of time, all included within this same glacial period. Yet it may be doubted whether in any quarter of the world sedimentary deposits, including fossil remains, have gone on accumulating within the same area during the whole of this period. It is not, for instance, probable that sediment was deposited during the whole of the glacial period near the mouth of the Mississippi, within that limit of depth at which marine animals can flourish; for we know what vast geographical changes occurred in other parts of America during this space of time. When such beds as were deposited in shallow water near the mouth of the Mississippi during some part of the glacial period shall have been upraised, organic remains will probably first appear and disappear at different levels, owing to the migration of species and to geographical changes. And in the distant future a geologist examining these beds might be tempted to conclude that the average duration of life of the embedded fossils had been less than that of the glacial period, instead of having been really far greater—that is, extending from before the

glacial epoch to the present day.

In order to get a perfect gradation between two forms in the upper and lower parts of the same formation, the deposit must have gone on accumulating for a very long period, in order to have given sufficient time for the slow process of variation; hence the deposit will generally have to be a very thick one; and the species undergoing modification will have had to live on the same area throughout this whole time. But we have seen that a thick fossiliferous formation can only be accumulated during a period of subsidence; and to keep the depth approximately the same, which is necessary in order to enable the same species to live on the same space, the supply of sediment must nearly have counterbalanced the amount of subsidence. But this same movement of subsidence will often tend to sink the area whence the sediment is derived, and thus diminish the supply while the downward movement continues. In fact, this nearly exact balancing between the supply of sediment and the amount of subsidence is probably a rare contingency; for it has been observed by more than one palæontologist that very thick deposits are usually barren of organic remains, except near their upper or lower limits.

It would seem that each separate formation, like the whole pile of formations in any country, has generally been intermittent in its accumulation. When we see, as is so often the case, a formation composed of beds of different mineralogical composition, we may reasonably suspect that the process of deposition has been much interrupted, as a change in the currents of the sea and a supply of sediment of a different nature will generally have been due to geographical changes requiring much time. Nor will the closest inspection of a formation give any idea of the time which its deposition has consumed. Many instances could be given of beds only a few feet in thickness, representing formations, elsewhere thousands of feet in thickness, and which must

have required an enormous period for their accumulation; yet no one ignorant of this fact would have suspected the vast lapse of time represented by the thinner formation. Many cases could be given of the lower beds of a formation having been upraised, denuded, submerged, and then re-covered by the upper beds of the same formation -facts showing what wide, yet easily overlooked, intervals have occurred in its accumulation. In other cases we have the plainest evidence in great fossilised trees, still standing upright as they grew, of many long intervals of time and changes of level during the process of deposition, which would never even have been suspected had not the trees chanced to have been preserved: thus Messrs. Lyell and Dawson found carboniferous beds 1,400 feet thick in Nova Scotia, with ancientroot-bearing strata, one above the other, at no less than sixtyeight different levels. Hence, when the same species occur at the bottom, middle, and top of a formation, the probability is that they have not lived on the same spot during the whole period of deposition, but have disappeared and reappeared, perhaps many times, during the same geological period. So that, if such species were to undergo a considerable amount of modification during any one geological period, a section would not probably include all the fine intermediate gradations which must, on my theory, have existed between them, but abrupt, though perhaps very slight, changes of form.

It is all-important to remember that naturalists have no golden rule by which to distinguish species and varieties; they grant some little variability to each species, but when they meet with a somewhat greater amount of difference between any two forms they rank both as species, unless they are enabled to connect them together by close intermediate gradations. And this, from the reasons just assigned, we can seldom hope to effect in any one geological section. Supposing B and C to be two species, and a third, A, to be found in an underlying bed; even if A were strictly intermediate between B and C, it would simply be ranked as a third and distinct species, unless at the same time it could be most closely connected with either one or both forms by intermediate varieties. Nor should it be forgotten, as before explained, that A might be the actual progenitor of B and C, and yet might not at all necessarily be strictly intermediate between them in all points of structure. So that we might obtain the parent-species and its several modified descendants from the lower and upper beds of a formation, and, unless we obtained numerous transitional gradations, we should not recognise their relationship, and should consequently be compelled to rank them all as distinct

species.

It is notorious on what excessively slight differences many palæontologists have founded their species; and they do this the more readily if the specimens come from different sub-stages of the same formation. Some experienced conchologists are now sinking many of the very fine species of D'Orbigny and others into the rank of varieties; and on this view we do find the kind of evidence of change which on my theory we ought to find. Moreover, if we look to rather wider intervals—namely, to distinct but consecutive stages of the same great formation, we find that the embedded fossils, though almost universally ranked as specifically different, yet are far more closely allied to each other than are the species found in more widely separated formations; but to this subject I shall have to return in the following chapter.

One other consideration is worth notice: with animals and plants that can propagate rapidly and are not highly locomotive, there is reason to suspect, as we have formerly seen, that their varieties are generally at first local; and that such local varieties do not spread widely and supplant their parentforms until they have been modified and perfected in some considerable degree. According to this view, the chance of discovering in a formation in any one country all the early stages of transition between any two forms is small, for the successive changes are supposed to have been local or confined to some one spot. Most marine animals have a wide range; and we have seen that with plants it is those which have the widest range that oftenest present varieties; so that with shells and other marine animals it is probably those which have had the widest range, far exceeding the limits of the known geological formations of Europe, which have oftenest given rise, first to local varieties, and ultimately to new species; and this again would greatly lessen the chance of our being able to trace the stages of transition in any one geological formation.

It should not be forgotten that at the present day, with perfect specimens for examination, two forms can seldom be connected by intermediate varieties and thus

proved to be the same species, until many specimens have been collected from many places; and in the case of fossil species this could rarely be effected by palæontologists. We shall, perhaps, best perceive the improbability of our being enabled to connect species by numerous, fine, intermediate, fossil links, by asking ourselves whether, for instance, geologists at some future period will be able to prove that our different. breeds of cattle, sheep, horses, and dogs have descended from a single stock or from several aboriginal stocks; or, again, whether certain sea-shells inhabiting the shores of North America, which are ranked by some conchologists as distinct species from their European representatives, and by other conchologists as only varieties, are really varieties, or are, as it is called, specifically distinct. This could be effected only by the future geologist discovering in a fossil state numerous intermediate gradations; and such success seems to me improbable

in the highest degree.

Geological research, though it has added numerous species to existing and extinct genera, and has made the intervals between some few groups less wide than they otherwise would have been, yet has done scarcely anything in breaking down the distinction between species, by connecting them together by numerous, fine, intermediate varieties; and this not having been effected is probably the gravest and most obvious of all the many objections which may be urged against my views. Hence it will be worth while to sum up the foregoing remarks, under an imaginary illustration. The Malay Archipelago is of about the size of Europe from the North Cape to the Mediterranean, and from Britain to Russia; and therefore equals all the geological formations which have been examined with any accuracy, excepting those of the United States of America. I fully agree with Mr. Godwin-Austen, that the present condition of the Malay Archipelago, with its numerous large islands separated by wide and shallow seas, probably represents the former state of Europe, whilst most of our formations were accumulating. The Malay Archipelago is one of the richest regions of the whole world in organic beings; yet, if all the species were to be collected which have ever lived there, how imperfectly would they represent the natural history of the world!

But we have every reason to believe that the terrestrial productions of the archipelago would be preserved in an excessively imperfect manner in the formations which we suppose to be there accumulating. I suspect that not many of the strictly littoral animals, or of those which lived on naked submarine rocks, would be embedded; and those embedded in gravel or sand would not endure to a distant epoch. Wherever sediment did not accumulate on the bed of the sea, or where it did not accumulate at a sufficient rate to protect organic bodies from decay, no remains could be preserved.

I believe that fossiliferous formations could be formed in the archipelago, of thickness sufficient to last to an age as distant in futurity as the secondary formations lie in the past, only during periods of subsidence. These periods of subsidence would be separated from each other by enormous intervals, during which the area would be either stationary or rising; while rising, each fossiliferous formation would be destroyed, almost as soon as accumulated, by the incessant coast-action, as we now see on the shores of South America. During the periods of subsidence there would probably be much extinction of life; during the periods of elevation there would be much variation; but the geological record would then be at least perfect.

It may be doubted whether the duration of any one great period of subsidence over the whole or part of the archipelago, together with a contemporaneous accumulation of sediment, would exceed the average duration of the same specific forms; and these contingencies are indispensable for the preservation of all the transitional gradations between any two or more species. If such gradations were not fully preserved, transitional varieties would merely appear as so many distinct species. It is, also, probable that each great period of subsidence would be interrupted by oscillations of level, and that slight climatal changes would intervene during such lengthy periods; and in these cases the inhabitants of the archipelago would have to migrate, and no closely consecutive record of their modifications could be preserved in any one formation.

Very many of the marine inhabitants of the archipelago now range thousands of miles beyond its confines; and analogy leads me to believe that it would be chiefly these far-ranging species which would oftenest produce new varieties; and the varieties would at first generally be local or confined to one place, but if possessed of any decided advantage, or when further modified and improved, they would slowly spread and supplant their parent-forms.

When such varieties returned to their ancient homes, as they would differ from their former state, in a nearly uniform, though perhaps extremely slight degree, they would, according to the principles followed by many palæontologists, be ranked as new and distinct species

as new and distinct species.

If, then, there be some degree of truth in these remarks, we have no right to expect to find in our geological formation an infinite number of those fine transitional forms which, on my theory, assuredly have connected all the past and present species of the same group into one long and branching chain of life. We ought only to look for a few links, some more closely, some more distantly related to each other; and these links, let them be ever so close, if found in different stages of the same formation, would, by most palæontologists, be ranked as distinct species. But I do not pretend that I should ever have suspected how poor a record of the mutations of life, the best preserved geological section presented, had not the difficulty of our not discovering innumerable transitional links between the species which appeared at the commencement and close of each formation pressed so hardly on my theory.

On the sudden appearance of whole groups of Allied Species.—The abrupt manner in which whole groups of species suddenly appear in certain formations has been urged by several palæontologists-for instance, by Agassiz, Pictet, and by none more forcibly than by Professor Sedgwick —as a fatal objection to the belief in the transmutation of species. If numerous species, belonging to the same genera or families, have really started into life all at once, the fact would be fatal to the theory of descent with slow modification through natural selection. For the development of a group of forms, all of which have descended from some one progenitor, must have been an extremely slow process; and the progenitors must have lived long ages before their modified descendants. But we continually overrate the perfection of the geological record, and falsely infer, because certain genera or families have not been found beneath a certain stage, that they did not exist before that stage. We continually forget how large the world is, compared with the area over which our geological formations have been carefully examined; we forget that groups of species may elsewhere have long existed and have slowly multiplied before they invaded the