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AN INTRODUCTION TO
MATHEMATICS

CHAPTER 1

THE ABSTRACT NATURE OF MATHEMATICS

TaE study of mathematies is apt to com-
mence in disappointment. The important
applications of the science, the theoretical
interest of its ideas, and the logical rigour of
its methods, all generate the expectation of
a speedy introduction to processes of interest.
We are told that by its aid the stars are
weighed and the billions of molecules in a
drop of water are counted. Yet, like the
ghost of Hamlet’s father, this great science
eludes the efforts of our mental weapons
to grasp it—*’'Tis here, ’tis there, °tis
gone '—and what we do see does not suggest
the same excuse for illusiveness as sufficed
for the ghost, that it is too noble for
our gross methods. ‘A show of violence,”
if ever excusable, may surely be * offered ™
to the trivial results which occupy the

3




8 INTRODUCTION TO MATHEMATICS

pages of some elementary mathematical
treatises.

The reason for this failure of the science to
ive up to its reputation is that its funda-
mental 1deas are not explained to the student
disentangled from the technical procedure
which has been invented to facilitate their
exact presentation in particular instances.
Accordingly, the unfortunate learner finds
himself struggling to acquire a knowledge of
a mass of details which are not illuminated
by any general conception. Without a doubt,
technical facility is a first requisite for valu-
able mental activity : we shall fail to appre-
ciate the rhythm of Milton, or the passion of
Shelley, so long as we find it necessary to
spell the words and are not quite certain of
the forms of the individual letters. In this
sense there is no royal road to learning. But
it 1s equally an error to confine attention to
technical processes, excluding consideration
of general ideas. Here lies the road to
pedantry.

The object of the following Chapters is not
to teach mathematies, but to enable students
from the very beginning of their course to
know what the science is about, and why it is
necessarlly the foundation of exact thought
as applied to matural phenomena. All allu-
sion in what follows to detailed deductions
in any part of the science will be inserted
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NATURE OF MATHEMATICS 9

merely for the purpose of example, and care
will be taken to make the general argument
comprehensible, even if here and there some
technical process or symbol which the reader
does not understand is cited for the purpose
of 1llustration.

The first acquaintance which most people
have with mathematics is through arithmetie.
That two and two make four is usually taken
as the type of a simple mathematical pro-
position which everyone will have heard of.
Arithmetic, therefore, will be a good subject
to consider in order to discover, if possible,
the most obvious characteristic of the science.
Now, the first noticeable fact about arithmetie
is that it applies to everything, to tastes and
to sounds, to apples and to angels, to the
ideas of the mind and to the bones of the
body. The nature of the things is perfectly
indifferent, of all things it is true that two
and two make four. Thus we write down as
the leading characteristic of mathematies
that it deals with properties and ideas
which are applicable to things just because
they are things, and apart from any particular
feelings, or emotions, or sensations, in any
way connected with them. This is what
is meant by calling mathematics an abstract

science.
The result which we have reached deserves

attention. It is natural to think that an
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abstract science cannot be of much import-
ance 1n the affairs of human life, because it
has omitted from its consideration every-
thing of real interest. It will be remembered
that Swift, in his description of Gulliver’s
voyage to Laputa, is of two minds on this
point. He describes the mathematicians of
that country as silly and useless dreamers,
whose attention has to be awakened by
flappers. Also, the mathematical tailor mea-
sures his height by a quadrant, and deduces
his other dimensions by a rule and compasses,
producing a suit of very ill-fitting clothes.
On the other hand, the mathematicians of
Laputa, by their marvellous invention of the
magnetic island floating in the air, ruled the
country and maintained their ascendency
over their subjects. Swift, indeed, lived at
a time peculiarly unsuited for gibes at con-
temporary mathematicians. Newton’s Prin-
cipia had just been written, one of the great
forces which have transformed the modern
world. Swift might just as well have laughed
at an earthquake.

But a mere list of the achievements of

mathematics is an unsatisfactory way of
arriving at an idea of its importance. It is
worth while to spend a little thought in
getting at the root reason why mathematics,
because of its very abstractness, must always
remain one of the most important topics
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for thought. Let us try to make clear to
ourselves why explanations of the order of
events necessarily tend to become mathe-
matical,

Consider how all events are interconnected.
When we see the lightning, we listen for the
thunder; when we hear the wind, we look
for the waves on the sea ; in the chill autumn,
the leaves fall. KEverywhere order reigns, so
that when some circumstances have been
noted we can foresee that others will also be
present. The progress of science consists in
observing these interconnections and in show-
ing with a patient ingenuity that the events
of this evershifting world are but examples of
a few general connections or relations called
laws. To see what is general in what is par-
ticular and what is permanent in what 1s
transitory is the aim of scientific thought. In
the eye of science, the fall of an apple, the
motion of a planet round a sun, and the cling-
ing of the atmosphere to the earth are all
seen as examples of the law of gravity. This
possibility of disentangling the most complex
evanescent circumstances into various ex-
amples of permanent laws is the controlling

idea of modern thought.
Now let us think of the sort of laws which

we want in order completely to realize this
seientific ideal. Our knowledge of the par-
ticular facts of the world around us is gained
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from our sensations, We see, and hear, and
taste, and smell, and feel hot and cold, and
push, and rub, and ache, and tingle. These
are Just our own personal sensations: my
toothache cannot be your toothache, and my
sight eannot be your sight. But we ascribe
the origin of these sensations to relations be-
tween the things which form the external
world. Thus the dentist extracts not the
toothache but the tooth. And not only so,
we also endeavour to imagine the world as
one connected set of things which underlies
all the perceptions of all people. There is not
one world of things for my sensations and an-
other for yours, but one world in which we
both exist. It is the same tooth both for
dentist and patient. Also we hear and we
touch the same world as we see.

It 1s easy, therefore, to understand that we
want to describe the connections between

these external things in some way which does

not depend on any particular sensations, nor
even on all the sensations of anhz particular
person. The laws satisfied by the course of
events in the world of external things are to
be described, if possible, in a neutral uni-
versal fashion, the same for blind men as for
deaf men, and the same for beings with
faculties beyond our ken as for normal human
beings.

But when we have put aside our
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sensations, the most serviceable part—from
its clearness, definiteness, and universality—
of what is left is composed of our general ideas
of the abstract formal properties of things;
in fact, the abstract mathematical ideas men-
tioned above. Thus it comes about that,
step by step, and not realizing the full mean-
ing of the process, mankind has been led to
search for a mathematical description of the
properties of the universe, because in this way
only can a general idea of the course of events
be formed, freed from reference to particular
persons or to particular types of sensation.
For example, it might be asked at dinner:
““ What was it which underlay my sensation
of sight, yours of touch, and his of taste
and smell 7’ the answer being ‘‘ an apple.”
But in its final analysis, science seeks to
describe an apple in terms of the positions
and motions of molecules, a description which
ignores me and you and him, and also ig-
nores sigcht and touch and taste and smell.
Thus mathematical ideas, because they
are abstract, supply just what 1Is wanted
for a scientific description of the course of

This point has usually been misunderstood,
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ultimate explanation of all things was to be
found in Newtonian mechanics was an adum-
bration of the truth that all science as

ﬂ{l
OWAards periectior thne- 4
- - |




CHAPTER 11
VARIABLES

MATHEMATICS as a science commenced when
first someone, probably a Greek, proved pro-
positions about any things or about some
things, without specification of definite par-
ticular things. These propositions were first
enunciated by the Greeks for geometry; and,
accordingly, geometry was the great Greek
mathematical science. After the rise of geo-
metry centuries passed away before algebra
made a really effective start, despite some
faint anticipations by the later Greek mathe-
maticians.

The ideas of any and of some are intro-
duced into algebra by the use of letters, in-
stead of the definite numbers of arithmetiec.
Thus, instead of saying that 24+8=38+2, in
algebra we generalize and say that, if # and
y stand for any two numbers, then z +y =y +a.
Again, in the place of saying that 3>2, we
generalize and say that if @ be any number
there exists some number (or numbers) y such
that y > 2. We may remark in passing that
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. of vital importance, both to philosophy and

. to mathematics; for by it the notion of in-
\finity is introduced. Perhaps it required the

_

introduction of the arabic numerals, by which
the use of letters as standing for definite
numbers has been completely discarded in
mathematics, in order to suggest to mathe-
maticians the technical convenience of the
use of letters for the ideas of any number
and some number. The Romans would have
stated the number of the year in which this
1s written in the form MDCCCCX., whereas
we write it 1910, thus leaving the letters for
the other usage. But this is merely a specu-
lation. After the rise of algebra the differ-
ential calculus was invented by Newton and
Leibniz, and then a pause in the progress
of the philosophy of mathematical thought
occurred so far as these notions are concerned :
and it was not till within the last few years
that it has been realized how fundamental
any and some are to the very nature of mathe-
matics, with the result of opening out still
further subjects for mathematical explora-
tion.

Let us now make some simple algebraie
statements, with the object of understanding
exactly how these fundamental ideas occur.

(1) For any number @, 2 4+2=2+4a;
(2) For some number @, 2 4+2=38 ;
(3) For some number @, 242> 8.
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T'he first point to notice is the possibilities
contained in the meaning of some, as here
used. Since #+42=2+a for any number a, it
i1s true for some number . Thus, as here used,
any 1mplies some and some does not exclude
any. Again, in the second example, there is,
in fact, only one number a, such that 2 +2 =3,
namely only the number 1. Thus the some
may be one number only. But in the third,
example, any number # which is greater than
1 gives +2 > 3. Hence there are an infinite
number of numbers which answer to the some
number in this case. Thus some may be any-
thing between any and one only, including
both these limiting cases.

It is natural to supersede the statements
(2) and (3) by the questions :

(2) For what number @ 1s +2=3;

(8') For what numbers @ 1s 2+2 > 8.
Considering (2'), #+2=38 is an equation, and
it is easy to see that its solution is # =8 —2=1.
When we have asked the question implied in

the statement of the equation #+2=38, @ is
called the unknown. The object of the solu-

tion of the equation is the determination of
the unknown. Equations are of great im-
portance in mathematics, and it seems as
though (2’) exemplified a much more thorough-
going and fundamental idea than the original

statement (2). This, however, is a complete
mistake. The idea of the undetermined
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‘ yariable ”” as occurring in the use of *‘ some ”
or “any” is the really important one In
mathematics ; that of the ** unknown * 1n an
equation, which is to be solved as quickly as
possible, is only of subordinate use, though
of course it is very important. One of the
causes of the apparent triviality of much of
elementary algebra is the preoccupation of
the text-books with the solution of equations.
The same remark applies to the solution of
the inequality (8’) as compared to the original
statement (3).

But the majority of interesting formule,
especially when the idea of some 1s present,
involve more than one variable. For ex-
ample, the consideration of the pairs of num-
bers # and y (fractional or integral) which
satisfy @ +y =1 involves the idea of two corre-
lated variables, z and y. When two variables
are present the same two main types of
statement occur. For example, (1) for
any pair of numbers, 2 and y, 2+y=y+2a,
and (2) for some pairs of numbers, # and y,
z+y=1.

The second type of statement invites con-
sideration of the aggregate of pairs of num-
bers which are bound together by some fixed
relation—in the case given, by the relation
¢+y=1. One use of formule of the first
type, true for any pair of numbers, is that by
them formule of the second type can be
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thrown into an indefinite number of equiva-\

Icntﬁform.s:. For example, she relation T +y
=1 1s equivalent to the relations

y+ae=1, (2—y)+2y=1, 6x+46y=6,

and so on. Thus a skilful mathematician
uses that equivalent form of the relation
under consideration which is most convenient
for his immediate purpose.

It 1s not in general true that, when a pair
of terms satisfy some fixed relation, if one of
the terms is given the other is also definitely
determined. For example, when # and y
satisfy y2=a, if =4, y can be 42, thus,
for any positive value of 2 there are alter-
native values for y. Also in the relation
x+y>1, when either @ or y 1s given, an
| indefinite number of values remain open for
the other.

Again there is another important point to
be noticed. If we restrict ourselves to posi-
tive numbers, integral or fractional, in con-
sidering the relation #+4y=1, then, if either
@ or y be greater than 1, there is no positive
number which the other can assume so as to
satisfy the relation. Thus the “field” of
the relation for @ is restricted to numbers less
than 1, and similarly for the *“ field ” open
to y. Again, consider integral numbers only,
positive or negative, and take the relation

= e o —— o v A i A A —— -
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y?2=p, satisfied by pairs of such numbers.
Then whatever integral value is given to v,
® can assume one corresponding integral
value. So the *‘ field ”’ for ¥ is unrestricted
among these positive or negative integers.
But the *‘field ” for @ is restricted in two
ways. In the first place # must be positive,
and in the second place, since y is to be in-
tegral, ® must be a perfect square. Accord-
ingly, the “field”” of @ is restricted to the set
of integers 12, 22, 32, 42, and so on, i.e., to 1,
4, 9, 16, and so on.

The study of the general properties of a
relation between pairs of numbers is much

facilitated by the use of a diagram constructed
as follows :

Fig. 1.

Draw two lines OX and OY at right angles;
let any number @ be represented by @ units
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(In any secale) of length along OX, ANy nums-
ber i by y units (in any scale) of length along
OY. Thus if OM, along 0X, be 2 units in
length, and ON, along OY, be y units in length,
by completing the parallelogram OMPN we
find a point P which corresponds to the pair
of numbers @ and . To each point there
corresponds one pair of numbers, and to each
pair of numbers there corresponds one point.
The gair of numbers are called the co-
ordinates of the point. en the points
whose coordinates satisfy some fixed rela-
tion can be indicated in a convenient way,
by drawing a line, if they all lie on a line,
or by shading an area if they are all points
in the area. If the relation can be repre-
sented by an equation such as z+4y=1, or
2 =a, then the points lie on a line, which is
straight in the former case and curved in
the latter. For example, considering only
positive numbers, the points whose co-
ordinates satisfy @-y=1 lie on the straight

line AB in Fig. 1, where 04 =1 and OB =1.
Thus this segment of the straight line 4B

gives a pictorial representation of the proper-
ties of the relation under the restriction to

positive numbers. .

Another example of a relation between two
variables is afforded by considering the varia-
tions in the pressure and volume of a given

bstance—such as air
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or coal-gas or steam—at a constant tempera-
ture. Let v be the number of cubic feet in
its volume and p its pressure in lb. weight
per square inch. Then the law, known as
Boyle’s law, expressing the relation between
p and v as both vary, is that the product
pv 1is constant, always supposing that the
temperature does not alter. Let us suppose,
for example, that the quantity of the gas
and its other circumstances are such that
we can put pv=1 (the exact number on

the right-hand side of the equation makes
no essential difference).

Fig. 2.

Then in Fig. 2 we take two lines, OV and
OP, at right angles and draw OM along OV
to represent v units of volume, and ON along
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OF to represent p units of pressure. Then
the point @, which is found by completing the
parallelogram OM@N, represents the state of
the gas when its volume is v cubic feet and its
pressure 1s p lb. weight per square inch. If
the circumstances of the portion of gas con-
sidered are such that pv=1, then all these
points @ which correspond to any possible
state of this portion of gas must lie on the
curved line 4BC, which includes all points
for which p and v are positive, and pv=1.
Thus this curved line gives a pictorial repre-
sentation of the relation holding between the
volume and the pressure. When the pressure
is very big the corresponding point @ must
be near C, or even beyond C on the undrawn
part of the curve; then the volume will be
very small. When the volume is big @ will
be near to 4, or beyond 4; and then the
pressure will be small. Notice that an en-
gineer or a physicist may want to know the
particular pressure corresponding to some
definitely assigned volume. Then we have
the case of determining the unknown p when
v is a known number. But this is only in
particular cases. In considering _generally
the properties of the gas and how 1t will be-
have, he has to have in his mind the general
form of the whole curve 4BC and its general
properties. In other words the really funda-
mental idea is that of the pair of variables
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satisfying the relation
mental, both

il
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CHAPTER III
METHODS OF APPLICATION

Tae way in which the idea of variables
satisfying a relation occurs in the applications
of mathematics is worth thought, and by
devoting some time to it we shall clear up
our thoughts on the whole subject.

Let us start with the simplest of examples :
—Suppose that building costs 1s. per cubic
foot and that 20s. make £1. Then in all
the complex circumstances which attend the
building of a new house, amid all the various
sensations and emotions of the owner, the
architect, the builder, the workmen, and the
onlookers as the house has grown to comple-
tion, this fixed correlation is by the law
assumed to hold between the cubic content
and the cost to the owner, namely that if 2
be the number of cubic feet, and £y the cost,
then 20y=a. This correlation of # and y is
assumed to be true for the building of any
house by any owner. Also, the volume of
the house and the cost are not supposed to
have been perceived or apprehended by any
particular sensation or faculty, or by any

25




26 INTRODUCTION TO MATHEMATICS

particular man. They are stated in an ab-
stract general w ay, with complete indiffer-
ence to the owner’s state of mind when he has
to pay the bill.

Now think a bit further as to what all this
means. 1he building of a house is a com-
plicated set of circumstances. It is im-
possible to begin to apply the law, or to test
it, unless amid the general course of events
1t 1s possible to recognize a definite set of
occurrences as forming a particular instance
of the building of a house. In short, we must
know a house when we see it, and must recog-
nize the events which belong to its building.
Then amidst these events, thus isolated in
idea from the rest of nature, the two elements
of the cost and cubic content must be deter-
minable ; and when they are both determined,
if the law be true, they satisfy the general
formula

20y =,

But is the law true ? Anyone who has had
much to do with building will know that we
have here put the cost rather high. It is
only for an expensive type of house that it
will work out at this price. This brings out
another point which must be made clear.
While we are making mathematical calcula-
tions connected with the formula 20y=a, it
is indifferent to us whether the law be true or
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false., In fact, the very meanings assigned
to # and y, as being a number of cubie feet
11{1(.1 a number of pounds sterling, are in-
different. During the mathematical investi-
gation we are, in fact, merely considering the
properties of this correlation between a pair
of variable numbers 2z and y. Our results
will apply equally well, if we interpret y to
mean a number of fishermen and 2 the num-
ber of fish caught, so that the assumed law
is that on the average each fisherman catches
twenty fish. The mathematical certainty of
the investigation only attaches to the results
considered as giving properties of the corre-
lation 20y=a between the variable pair of
numbers # and y. There is no mathematical
certainty whatever about the cost of the
actual building of any house. The law is not
quite true and the result it gives will not be
quite accurate. In fact, it may well be hope-
lessly wrong.

Now all this no doubt seems very obvious.
But in truth with more complicated instances
there is no more common error than to assume
that, because prolonged and accurate mathe-
matical calculations have been made, the
application of the result to some fact of
nature is absolutely certain. The conclusion
of no argument can be more certain than the
assumptions from which it starts. All mathe-
matical calculations about the course of
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nature must start from some assumed law of
nature, such, for instance, as the assumed
law of the cost of building stated above.
Accordingly, however accurately we have
calculated that some event must occur, the
doubt always remains—Is the law true ? If
the law states a precise result, almost cer-
tainly it is not precisely accurate; and thus
even at the best the result, precisely as calcu-
lated, is not likely to occur. But then we
have no faculty capable of observation with
ideal precision, so, after all, our maccurate
laws may be good enough.

We will now turn to an actual case, that
of Newton and the Law of Gravity. This law
states that any two bodies attract one an-
other with a force proportional to the product
of their masses, and inversely proportional to
the square of the distance between them.
Thus if m and M are the masses of the two
bodies, reckoned in lbs. say, and d miles is
the distance between them, the force on either
body, due to the attraction of the other and
directed towards it, is proportional to mﬁl;
thus this force can be written as equal to

k’;f“ , where k is a definite number depending
magnitude of this attraction

on the absolute
and also on the scale by which we choose to
measure forces. It is easy to see that, if we
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wrs:h Lo reckon in terms of forces such as the
welght of a mass of 1 Ib., the number which
k represents must be extremely small; for

wh}en ;;, and M and d are each put equal to
vrn
e r becomes the gravitational attraction

of two equal masses of 1 1b. at the distance of
one mile, and this is quite inappreciable.
However, we have now got our formula for

the force of attraction. If we call this force

. i
I, 1t 1s F=kmd= ,» glving the correlation be-

tween the variables F¥, m, M, and d. We all
know the story of how it was found out.
Newton, it states, was sitting in an orchard
and watched the fall of an apple, and then
the law of universal gravitation burst upon
his mind. It may be that the final formu-
lation of the law occurred to him in an
orchard, as well as elsewhere—and he must
have been somewhere. But for our purposes
it is more instructive to dwell upon the vast
amount of preparatory thought, the product
of many minds and many centuries, which
was necessary before this exact law could be
formulated. In the first place, the mathe-
matical habit of mind and the mathematical
procedure explained in the previous two
chapters had to be generated; otherwise
Newton could never have thought of a formula
representing the force between any two masses
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at any distance. Again, what are the mean-
ings of the terms employed, Force, Mass, Dis-
tance ¢ Take the easiest of these terms,
Distance. It seems very obvious to us to
conceive all material things as forming a de-
finite geometrical whole, such that the dis-
tances of the various parts are measurable in
terms of some unit length, such as a mile or
a yard. This is almost the first aspect of a
material structure which occurs to us. It 1S
the gradual outcome of the study of geometry
and of the theory of measurement. Xven
now, in certain cases, other modes of thought
are convenient. In a mountainous country
distances are often reckoned in hours. But
leaving distance, the other terms, Force and
Mass, are much more obscure. The exact
comprehension of the ideas which Newton
meant to convey by these words was of slow
growth, and, indeed, Newton himself was the
frst man who had thoroughly mastered the
true general principles of Dynamics.
Throughout the middle ages, under the in-
fluence of Aristotle, the science was entirely
misconceived. Newton had the advantage of
coming after a series of great men, notably
Galileo, in Italy, who in the previous two
centuries had reconstructed the science and
had invented the right way of thinking about
it. He completed their work. Then, finally,
having the ideas of force, mass, and distance,
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clca_.r and distinet in his mind, and realising
their importance and their relevance to the
fall of an apple and the motions of the planets,
he hit upon the law of gravitation and proved
it to be the formula always satisfied in these
various motions.

The vital point in the application of mathe-
matical formule is to have clear ideas and a
correct estimate of their relevance to the
phenomena under observation. No less than
ourselves, our remote ancestors were im-
pressed with the importance of natural
phenomena and with the desirability of taking
energetic measures to regulate the sequence
of events. Under the influence of irrelevant
ideas they executed elaborate religious cere-
monies to aid the birth of the new moon, and
performed sacrifices to save the sun during
the crisis of an eclipse. There is no reason to
believe that they were more stupid than we
are. But at that epoch there had not been
opportunity for the slow accumulation of

clear and relevant ideas.

The sort of way in which physical sciences
grow Into a form capable of treatment by
mathematical methods is illustrated by the
history of the gradual growth of the science
of electromagnetism. Thunderstorms are
events on a grand scale, arousing terror in
men and even animals. From the earliest
times they must have been objects of wild
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and fantastic hypotheses, though it may be
doubted whether our modern scientific dis-
coveries in connection with electricity are not
more astonishing than any ol the magical
explanations of savages. The Greeks knew
that amber (Greek, electron) when rubbed
would attract light and dry bodies. In
1600 A.D., Dr. Gilbert, of Colchester, published
the first work on the subject in which any
scientific method is followed. He made a
list of substances possessing properties similar
to those of amber: he must also have the
credit of connecting, however vaguely, electric
and magnetic phenomena. At the end of the
seventeenth and throughout the eighteenth
century knowledge advanced. Electrical
machines were made, sparks were obtained
from them; and the Leyden Jar was in-
vented, by which these effects could be in-
tensified. Some organised knowledge was
being obtained ; but still no relevant mathe-
matical ideas had been found out. Franklin,
in the year 1752, sent a kite into the clouds
and proved that thunderstorms were elec-
trical.

Meanwhile from the earliest epoch (2684 B.c.)
the Chinese had utilized the characteristic .
property of the compass needle, but do not
seem to have connected it with any theoretical
ideas. 'The really profound changes in human
life all have their ultimate origin in knowledge
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pursued for its own sake, The use of the com-
pass was not introduced into Furope till the end
of the twelfth century A.p., more than 3000
years after its first use in China. The import-
ance which the science of electromagnetism
has since assumed in every department of
human life is not due to the superior practical
bias of Europeans, but to the fact that in the
West electrical and magnetic phenomena
were studied by men who were dominated by
abstract theoretic interests.

The discovery of the electric current is due
to two Italians, Galvani in 1780, and Volta
in 1792. This great invention opened a new
series of phenomena for investigation. The
scientific world had now three separate,
though allied, groups of occurrences on hand
—the effects of * statical »* electricity arising
from frictional electrical machines, the mag-
netic phenomena, and the effects due to
electric currents. From the end of the
eighteenth century onwards, these three lines
of investigation were quickly inter-connected
and the modern science of electromagnetism
was constructed, which now threatens to
transform human life.

Mathematical ideas now appear. During
the decade 1780 to 1789, Coulomb, a French-
man, proved that magnetic poles attract or
repel each other, in proportion to the inverse
square of their distances, and also that the
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same law holds for electric charges—laws
curiously analogous to that of gravitation.
In 1820, Oersted, a Dane, discovered that
electric currents exert a force on magnets,
and almost immediately afterwards the
mathematical law of the force was correctly
formulated by Ampere, a Frenchman, who
also proved that two electric currents exerted
forces on each other. *‘The experimental in-

vestigation by which Ampere established the

- law of the mechanical action between electrie
~ currents is one of the most brilliant achieve-
- ments in science. The whole, theory and

experiment, seems as if it had leaped, full-
grown and full armed, from the brain of
the ‘ Newton of Electricity.” It i1s perfect
in form, and unassailable in accuracy, and it
is summed up in a formula from which all
the phenomena may be deduced, and which
must always remain the cardinal formula of
electro-dynamics.” *

The momentous laws of induction between
currents and between currents and magnets
were discovered by Michael Faraday in 1831-
32. Faraday was asked: ‘“What is the use
of this discovery ?’’ Heanswered: * Whatis
the use of a child—it grows to be a man.”
Faraday’s child has grown to be a man and
is now the basis of all the modern applications

.h'_ Electricity and Magnetism, Clerk Maxwell, Vol. IL,
. 111,
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of electricity. F araday also reorganized the
.“'l.l“l(" theoretical conception of the science,
His ideas, which had not been fully under-
stood by the scientific world, were extended
and put into a directly mathematical form by
Clerk Maxwell in 1878. As a result of his
mathematical investigations, Maxwell recog-
ngzed that, under certain conditions, electrical
vibrations ought to be propagated. He at
once suggested that the vibrations which
form light are electrical. This suggestion has
since been verified, so that now the whole
theory of light is nothing but a branch of the
great science of electricity. Also Herz, a
German, in 1888, following on Maxwell’s
ideas, succeeded in producing electric vibra-
tions by direct electrical methods His
experiments are the basis of our wireless
telegraphy.

In more recent years even more funda-
mental discoveries have been made, and the
science continues to grow in theoretic import-
ance and in practical interest. This rapid
sketch of its progress illustrates how, by the
gradual introduction of the relevant theoretie
ideas, suggested by experiment and them-
selves suggesting fresh experiments, a whole
mass of isolated and even trivial phenomena
are welded together into one coherent science,
in which the results of abstract mathematical

deductions, starting from a few simple as-
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sumed laws, supply the explanation to the
complex tangle of the course of events.

Finally, passing beyond the particular
sciences of electromagnetism and light, we
can generalize our point of view still further,
and direct our attention to the growth of
mathematical physics considered as one great
chapter of scientific thought. In the first
place, what in the barest outlines is the story
of its growth ?

It did not begin as one science, or as the
product of one band of men. The Chaldean
shepherds watched the skies, the agents of
Government in Mesopotamia and Egypt
measured the land, priests and philosophers
brooded on the general nature of all things.
The vast mass of the operations of nature
appeared due to mysterious unfathomable
forces. “‘ The wind bloweth where it listeth ?*
expresses accurately the blank ignorance then
existing of any stable rules followed in detail
by the succession of phenomena. Inbroad out-
line, then as now, a regularity of events was
patent. But no minute tracing of their inter-
connection was possible, and there was no

knowledge how even to set about to construct
such a science.

Detached speculations, a few happy or un-
happy shots at the nature of things, formed
the utmost which could be produced.

Meanwhile land-surveys had produced geo-
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metry, and the observations of the heaveng
disclosed the exact regularity of the solar
system. Some of the later Greeks, such ag
Archimedes, had just views on the elementary
phenomena of hydrostatics and optics. In-
deed, Archimedes, who combined a genius for
mathematics with a physical insight, must
rank with Newton, who lived nearly two
thousand years later, as one of the founders
of mathematical physics. He lived at Syra-
cuse, the great Greek city of Sicily. When
the Romans besieged the town (in 212 to
210 B.c.), he is said to have burned their ships
by concentrating on them, by means of
mirrors, the sun’s rays. The story is highly
improbable, but is good evidence of the repu-
tation which he had gained among his con-
temporaries for his knowledge of opties. At
the end of this siege he was killed. According
to one account given by Plutarch, in his life of
Marcellus, he was found by a Roman soldier
absorbed in the study of a geometrical diagram
which he had traced on the sandy floor of his
room. He did not immediately obey the orders
of his captor, and so was killed. For the eredit
of the Roman generals it must be said that
the soldiers had orders to spare him. The
internal evidence for the other famous story
of him is very strong; for the discovery
attributed to him is one eminently worthy of
his genius for mathematical and physical re-
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search. Luckily, it is simple enough to be
explained here in detail. It is one of the best
easy examples of the method of application
of mathematical 1deas to physies.

Hiero, King of Syracuse, had sent a quan-
tity of gold to some goldsmith to form the

material of a crown. He suspected that the
craftsmen had abstracted some of the gold

and had supplied its place by alloying the
remainder with some baser metal. Hiero
sent the crown to Archimedes and asked him
to test it. In these days an indefinite num-
ber of chemical tests would be available.
But then Archimedes had to think out the
matter afresh. The solution flashed upon
him as he lay in his bath. He jumped
up and ran through the streets to the
palace, shouting Eureka! Eureka! (1 have
found it, I have found it). This day, if we
knew which it was, ought to be celebrated as
the birthday of mathematical physics; the
science came of age when Newton sat in his
orchard. Archimedes had in truth made a
great discovery. He saw that a body when
immersed in water is pressed upwards by the
surrounding water with a resultant force
equal to the weight of the water it displaces.
This law can be proved theoretically from the
mathematical principles of hydrostatics and
can also be verified experimentally. Hence,
if W 1b. be the weight of the crown, as weighed
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in air, and w Ib. be the weight of the water
which it displaces when completely immersed,
W —w would be the extra upward force
necessary to sustain the crown as it hung in
waler.

Now, this upward force can easily be ascer-
tained by weighing the body as it hangs in
water, as shown in the annexed figure. If

Fig. 3.

the weights in the right-hand scale come to
F 1b., then the apparent weight of the crown
in water is F 1b.; and we thus have

F=W—w
and thus w=W —F,

and -t;' "--'-'-WT_":F (A)

where W and F are determined by the easy,
and fairly precise, operation of weighing.

o _nﬁ
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| W .
Hence, by equation (4), —_% 1s known. But
& . :
o 18 the ratio of the weight of the crown to

the weight of an equal volume of water.
This ratio 1s the same for any lump of metal of
the same material : it is now called the specific
gravity of the material, and depends only on
the intrinsic nature of the substance and not
on its shape or quantity. Thus to test if the
crown were of gold, Archimedes had only to
take a lump of indisputably pure gold and
find its specific gravity by the same process.
If the two specific gravities agreed, the crown
was pure ; if they disagreed, it was debased.

This argument has been given at length,
because not only is it the first precise example
of the application of mathematical ideas to
physics, but also because it is a perfect and
simple example of what must be the method
and spirit of the science for all time,

The death of Archimedes by the hands of a
Roman soldier is symbolical of a world-change
of the first magnitude : the theoretical Greeks,
with their love of abstract science, were super-
seded in the leadership of the European world
by the practical Romans. Lord Beacons-
field, in one of his novels, has defined a practi-
cal man as a man who practises the errors of
his forefathers. The Romans were a great
race, but they were cursed with the sterility
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which waits upon practicality. They did not
improve upon the knowledge of their fore-
fathers, and all their advances were confined
to the minor technical details of engineering.
They were not dreamers enough to arrive at
new points of view, which could give a more
fundamental control over the forces of nature.
No Roman lost his life because he was ab-

sorbed in the contemplation of a mathe-
matical diagram,




CHAPTER 1V

DYNAMICS

Tre world had to wait for eighteen hundred
years till the Greek mathematical physicists
found successors. In the sixteenth and seven-
teenth centuries of our era great Italians, in
particular Leonardo da Vinci, the artist
(born 1452, died 1519), and Galileo (born 1564,
died 1642), rediscovered the secret, known to
Archimedes, of relating abstract mathematical
ideas with the experimental investigation of
natural phenomena. Meanwhile the slow
advance of mathematics and the accumula-
tion of accurate astronomical knowledge had
placed natural philosophers in a much more
advantageous position for research. Also the
very egoistic self-assertion of that age, its
greediness for personal experience, led its
thinkers to want to see for themselves what
happened ; and the secret of the relation of

mathematical theory and experiment in in-
ductive reasoning was practically discovered.

It was an act eminently characteristic of the
age that Galileo, a philosopher, should have

42
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dropped the weights from the leaning tower
of Pisa. There are always men of thought
and men of action ; mathematical physies is
the product of an age which combined in the
same men impulses to thought with impulses
to action.

This matter of the dropping of weights from
the tower marks picturesquely an essential
step in knowledge, no less a step than the
first attainment of correct ideas on the science
of dynamies, the basal science of the whole
subject. The particular point in dispute was
as to whether bodies of different weights
would fall from the same height in the same
time. According to a dictum of Aristotle,
universally followed up to that epoch, the
heavier weight would fall the quicker. Gali-
leo affirmed that they would fall in the same
time, and proved his point by dropping
weights from the top of the leaning tower.
The apparent exceptions to the rule all arise
when, for some reason, such as extreme light-
ness or great speed, the air resistance is im-
portant. But neglecting the air the law is
exact. |

Galileo’s successful experiment was not the
result of a mere lucky guess. It arose from
his correct ideas in connection with inertia
and mass. The first law of motion, as follow-
ing Newton we now enunciate it, w—-Ev&;y
body continues in its state of rest or of uni-
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form motion in a straight line, except so far
as 1t 1s compelled by impressed force to
change that state. This law is more than a
dry formula: it is also a psan of triumph
over defeated heretics. The point at issue
can be understood by deleting from the law
the phrase ** or of uniform meotion in a straight
line.” We there obtain what might be taken
as the Aristotelian opposition formula :
" Every body continues in its state of rest
except so far as it is compelled by impressed
force to change that state.”

In this last false formula it is asserted that,
apart from force, a body continues in a state
of rest; and accordingly that, if a body is
moving, a force is required to sustain the
motion ; so that when the force ceases, the
motion ceases. The true Newtonian law
takes diametrically the opposite point of view.
The state of a body unacted on by force is
that of uniform motion in s straight line, and
no external force or influence is to be looked
for as the cause, or, if you like to put it so, as
the invariable accompaniment of this uniform
rectilinear motion. Rest is merely a par-
ticular case of such motion, merely when the
velocity is and remains zero. Thus, when a
body is moving, we do not seek for any ex-
ternal influence except to explain changes in
the rate of the velocity or changes in its direc-
tion. So long as the body is moving at the
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same rate and in the same direction there is
no need to invoke the aid of any forees.
The difference between the two points of
view is well seen by reference to the theory of
the motion of the planets. Copernicus, a
Pole, born at Thorn in West Prussia (born
1473, died 1543), showed how much simpler
it was to conceive the planets, including the

Force (onfalse hypothesis)

planet

Fig. 4.

earth as revolving round the sun in orbits
which are nearly circular; and later, Kepler,
a German mathematician, in the year 1609
proved that, in fact, the orbits are practically
ellipses, that is, a special sort of oval curves
which we will consider later in more detail.
Immediately the question arose as to what
are the forces which preserve the planets in
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held by Kepler, the actual velocity itself re-
quired preservation by force. Thus he looked
for tangential forces as in the accompanying
figure (4). But according to the Newtonian
law, apart from some force the planet would
move for ever with its existing velocity in a
straight line, and thus depart entirely from
the sun. Newton, therefore, had to search
for a force which would bend the motion

Fig. 5.

round into its elliptical orbit. This he showed
must be a force directed towards the sun as in
the next figure (5). In fact, the force is the
gravitational attraction of the sun acting
according to the law of the inverse square of
the distance, which has been stated above.
The science of mechanics rose among the
Greeks from a consideration of the theory of
the mechanical advantage obtained by the use
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of a lever, and also from a consideration of
various problems connected with the weights
of bodies. It was finally put on its true basis
at the end of the sixteenth and during the
seventeenth centuries, as the preceding ac-
count shows, partly with the view of explain-
ing the theory of falling bodies, but chiefly
in order to give a scientific theory of planetary
motions. But since those days dynamics has
taken upon itself a more ambitious task, and
now claims to be the ultimate science of which
the others are but branches. The claim
amounts to this: namely, that the various
qualities of things perceptible to the senses
are merely our peculiar mode of appreciating
changes in position on the part of things
existing in space. For example, suppose we
look at Westminster Abbey. It has been
standing there, grey and immovable, for cen-
turies past. But, according to modern scien-
tific theory, that greyness, which so heightens
our sense of the immobility of the building, 1s

itself nothing but our way of appreciating the
rapid motions of the ultimate molecules, which
form the outer surface of the building and
communicate vibrations to a substance called
the ether. Again we lay our hands on its
stones and note their cool, even temperature,
so symbolic of the quiet repose of the building.
But this feeling of temperature simply marks
our sense of the transfer of heat from the
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hand to the stone, or from the stone to the
hand; and, according to modern science,
heat is nothing but the agitation of the mole-
cules of a body. Finally, the organ begins
playing, and again sound is nothing but the
result of motions of the air striking on the
drum of the ear.

Thus the endeavour to give a dynamical
explanation of phenomena is the attempt to
explain them by statements of the general
form, that such and such a substance or body
was In this place and is now in that place.
Thus we arrive at the great basal idea of
modern science, that all our sensations are
the result of comparisons of the changed
configurations of things in space at various
times. It follows therefore, that the laws
of motion, that 18, the laws of the changes
of configurations of things, are the ultimate
laws of physical seience.

 In the application of mathematics to the
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anyone in particular, or to any special modes
of perception. The result is that the chair
becomes in thought a set of molecules in space,
or a group of electrons, a portion of the ether
in motion, or however the current scientifie
ideas describe it. But the point is that
science reduces the chair to things moving in
space and influencing each other’s motions.
Then the various elements or factors which
enter into a set of circumstances, as thus
conceived, are merely the things, like lengths
of lines, sizes of angles, areas, and volumes, by
which the positions of bodies in space ecan be
settled. Of course, in addition to these geo-
metrical elements the fact of motion and
change necessitates the introduction of the
rates of changes of such elements, that is to
say, velocities, angular velocities, accelera-
tions,and suchlike things. Acecordingly, mathe-
matical physics deals with correlations be-
tween variable numbers which are supposed
to represent the correlations which exist in
nature between the measures of these geo-
metrical elements and of their rates of change.
But always the mathematical laws deal with
variables, and it is only in the occasional
testing of the laws by reference to experi-
ments, or in the use of the laws for special
predictions that definite numbers are substi-

tuted.
The interesting point about the world as
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thus conceived in this abstract way through-
out the study of mathematical physics, where
only the positions and shapes of things are
considered together with their changes, is that
the events of such an abstract world are sufli-
cient to ‘‘explain’’ our sensations. When we
hear a sound, the molecules of the air have
been agitated in a certain way : given the
agitation, or air-waves as they are called, all
normal people hear sound ; and if there are
no air-waves, there is no sound. And, simi-
larly, a physical cause or origin, or parallel
event (according as different people might like
to phrase it) underlies our other sensations.
Our very thoughts appear to correspond to
conformations and motions of the brain ; in-
jure the brain and you injure the thoughts.
Meanwhile the events of this physical universe
succeed each other according to the mathe-
matical laws which ignore all special sensa-
tions and thoughts and emotions.

Now, undoubtedly, this is the general aspect
of the relation of the world of mathematical
physics to our emotions, sensations, and
thoughts; and a great deal of controversy
has been occasioned by it and much ink
spilled. We need only make one remark. The
whole situation has arisen, as we have seen,
from the endeavour to describe an external
world * explanatory™ of our various in-

dividual sensations and emotions, but a world
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also, not essentially dependent upon any
particular sensations or upon any particular
individual. Is such a world merely but
one huge fairy tale? But fairy tales are
fantastic and arbitrary: if in truth there
be such a world, it ought to submit itself
to an exact description, which determines
accurately its various parts and their mutual
relations. Now, to a large degree, this
scientific world does submit itself to this
test and allow its events to be explored
and predicted by the apparatus of abstract
mathematical ideas. It certainly seems that
here we have an inductive verification of
our initial assumption. It must be admitted
that no inductive proof is conclusive; but
if the whole idea of a world which has
existence independently of our particular per-
ceptions of it be erroneous, it requires careful
explanation why the attempt to characterise
it, In terms of that mathematical remnant
of our ideas which would apply to it, should
issue in such a remarkable success.

It would take us too far afield to enter into
a detailed explanation of the other laws of
motion. The remainder of this chapter must
be devoted to the explanation of remarkable
ideas which are fundamental, both to mathe-
matical physics and to pure mathematies :
these are the ideas of vector quantities and
the parallelogram law for vector addition. We
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have seen that the essence of motion is that
a body was at 4 and is now at C. This trans-
ference from 4 to C requires two distinct
elements to be settled before it is completely
determined, namely its magnitude (i.e. the
length 4C) and its direction. Now any-
thing, like this transference, which is com-
pletely given by the determination of a magni-

0 c

A 8
Fig. 6.

tude and a direction is called a vector. For

example, a velocity requires for its definition
the assignment of a magnitude and of a
direction. It must be of so many miles per
hour in such and such a direction. The ex-
istence and the independence of these two
elements in the determination of a velocit

are well illustrated by the action of the captain
of a ship, who communicates with different sub-
ordinates respecting them : he tells the chief
engineer the number of knots at which he is
tosteam.a.ndthehelmmthempm
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bearing of the course which he is to keep.
Again the rate of change of velocity, that is
velocity added per unit time, is also a vector
quantity : it is called the acceleration. Simi-
larly a force in the dynamical sense is another
vector quantity. Indeed, the vector nature
of forces follows at once according to dynami-
cal principles from that of velocities and
accelerations ; but this is a point which we
need not go into. It is sufficient here to say
that a force acts on a body with a certain
magnitude in a certain direction.

Now all vectors can be graphically repre-
sented by straight lines. All that has to be
done is to arrange: (i) a scale according to
which units of length correspond to units of
magnitude of the vector—for example, one
inch to a velocity of 10 miles per hour in the
case of velocities, and one inch to a force of
10 tons weight in the case of forces—and (ii)
a direction of the line on the diagram corre-
sponding to the direction of the vector. Then
a line drawn with the proper number of inches
of length in the proper direction represents the
required vector on the arbitrarily assigned scale
of magnitude. This diagrammatic representa-
tion of vectors is of the first importance. By
its aid we can enunciate the famous * parallelo-
gram law ’ for the addition of vectors of the
same kind but in different directions.

Consider the vector 4C in figure 6 as repre-
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sentative of the changed position of a body
from A4 to C: we will call this the vector of
transportation. It will be noted that, if the
reduction of physical phenomena to mere
changes in positions, as explained above, is
correct, all other types of physical vectors are
really reducible in some way or other to this
single type. Now the final transportation
from 4 to C is equally well effected by a
transportation from 4 to B and a transporta-
tion from B to C, or, completing the parallelo-
gram ABCD, by a transportation from 4 to
D and a transportation from D to C. These
transportations as thus successively applied
are said to be added together. This is simply
a definition of what we mean by the addition
of transportations. Note further that, con-
sidering parallel lines as being lines drawn in
the same direction, the transportations B to
C and 4 to D may be conceived as the same
transportation applied to bodies in the two
initial positions B and 4. With this con-
ception we may talk of the transportation
4 to D as applied to a body in any position,
for example at B. Thus we may say that
the transportation 4 to C can be conceived
as the sum of the two transportations 4 to
B and 4 to D applied in any order. Here

we have the parallelogram law for the ad
dition of transportations : namely, if the
transportations are 4 to B and 4 to D,
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complete the parallelogram ABCD, and then
the sum of the two is the diagonal 4C.

All this at first sight may seem to be
very artificial. But it must be observed
that nature itself presents us with the idea.
For example, a steamer is moving in the
direction AD (cf. fig. 6) and a man walks
across its deck. If the steamer were still,
in one minute he would arrive at B; but
during that minute his starting point 4 on
the deck has moved to D, and his path on
the deck has moved from 4B to DC. So
that, in fact, his transportation has been from
A4 to C over the surface of the sea. It is,
however, presented to us analysed into the
sum of two transportations, namely, one from
A to B relatively to the steamer, and one
from A to D which is the transportation of
the steamer.

By taking into account the element of time,
namely one minute, this diagram of the man’s
transportation AC represents his velocity.
For if AC represented so many feet of trans-
portation, it now represents a transportation
of so many feet per minute, that is to say, it
represents the velocity of the man. Then
AB and AD represent two velocities, namely,
his velocity relatively to the steamer, and the
velocity of the steamer, whose * sum ” makes
up his complete velocity. It is evident that
diagrams and definitions concerning trans-
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portations are turned into diagrams and de-
finitions concerning velocities by conceiving
the diagrams as representing transportations
per unit time. Again, diagrams and defini-
tions concerning velocities are turned into
diagrams and definitions concerning accelera-

0 ¢

A B
Fig. T.

tions by conceiving the diagrams as repre-
senting velocities added per unit time. ;

Thus by the addition of vector velocities |
and of vector accelerations, we mean the |
addition according to the parallelogram law,

Also, according to the laws of motion a
force is fully represented by the wvector
acceleration it produces in a body of given
mass. Accordingly, forces will be said to be
added when their joint effect is to be reckoned
according to the parallelogram law.

Hence for the fundamental vectors of
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science, namely transportations, wvelocities,
and forces, the addition of any two of the same
kind 1s the production of a ‘‘resultant”
vector according to the rule of the parallelo-
gram law,

By far the simplest type of parallelogram
1s a rectangle, and in pure mathematics it is
the relation of the single vector 4C to the
two component vectors, AB and 4D, at right
angles (cf. fig. 7), which is continually re-
curring. Let @, y, and r units represent the
lengths of AB, AD, and AC, and let m units
of angle represent the magnitude of the angle
BAC. Then the relations between 2, y, r,
and m, in all their many aspects are the con-
tinually recurring topic of pure mathematics ;
and the results are of the type required for
application to the fundamental vectors of
mathematical physies. This diagram is the
chief bridge over which the results of pure
mathematics pass in order to obtain applica-
tion to the facts of nature.




CHAPTER V

THE SYMBOLISM OF MATHEMATICS

WE now return to pure mathematics, and
consider more closely the apparatus of ideas
out of which the science is built. Our first
concern is with the symbolism of the science,
and we start with the simplest and universally
known symbols, namely those of arithmetic.

Let us assume for the present that we have
sufficiently clear ideas about the integral
numbers, represented in the Arabic notation
PEALE; ..., 9,10, 1); .. . 300,300, . . . amxd
so on. This notation was introduced into
Europe through the Arabs, but they appar-
ently obtained it from Hindoo sources. The
first known work * in which it is systematic-
ally explained is a work by an Indian mathe-
matician, Bhaskara (born 1114 A.p.). But
the actual numerals can be traced back to the
seventh century of our era, and perhaps were
originally invented in Tibet. For our present

* For the detailed historical facts relating to pure
mathematics, I am ehiefly indebted to 4 Short History
of Mathematics, by W, W. R. Ball.
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purposes, however, the history of the notation
is a detaill. The interesting point to notice
1s the admirable illustration which this
numeral system affords of the enormous im-
portance of a good notation. By relieving
the brain of all unnecessary work, a good
notation sets it free to concentrate on more
advanced problems, and in effect increases
the mental power of the race. Before the
introduction of the Arabic notation, multipli-
cation was difficult, and the division even of
integers called into play the highest mathe-
matical faculties. Probably nothing in the
modern world would have more astonished a
Greek mathematician than to learn that, under
the influence of compulsory education, a
large proportion of the population of Western
Europe could perform the operation of
division for the largest numbers. This fact
would have seemed to him a sheer impos-
sibility. = The consequential extension of
the notation to decimal fractions was not
accomplished till the seventeenth century.
Our modern power of easy reckoning with
decimal fractions is the almost miraculous
result of the gradual discovery of a perfect
notation.

Mathematics i1s often considered a diffi-
cult and mysterious science, because of the
numerous symbols which it employs. Of
course, nothing is more incomprehensible than
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a symbolism which we do not understand.
Also a symbolism, which we only partially
understand and are unaccustomed to use, 18
difficult to follow. In exactly the same way
the technical terms of any profession or trade
are incomprehensible to those who have never
been trained to use them. But this is not
because they are difficult in themselves. On

" the contrary they have invariably been intro-

duced to make things easy. So in'mathe-
matics, granted that we are giving any serious
attention to mathematical ideas, the sym-
bolism is invariably an immense simplifica-
tion. It is not only of practical use, but is
of great interest. For it represents an analy-
sis of the ideas of the subject and an almost
pictorial representation of their relations to
each other. If anyone doubts the utility of
symbols, let him write out in full, without any
symbol whatever, the whole meaning of the

following equations which represent some of
the fundamental laws of algebra * :—

e+y=y+az .. 3 o 123
(#+y)+e=2+(y+2) .. .. (2)
EXY=yxao .. . s E9)
(z X y) X z2=0 x (y % 2) e |

®X (y+2)=(x x y)+(z x 2).. (5)

Here (1) and (2) are called the commutative
and associative laws for addition, (3) and (4)

* Cf. Note A, p. 250,
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are the commutative and associative laws for
multiplication, and (5) is the distributive law
relating addition and multiplication. For ex-
ample, without symbols, (1) becomes: If a
second number be added to any given number
the result is the same as if the first given
number had been added to the second number.

This example shows that, by the aid of sym-
bolism, we can make transitions in reasoning
almost*mechanically by the eye, which other-
wise would call into play the higher faculties

~ of the brain.

It 1sa profoundly erroneous truism, repeated
by all copy-books and by eminent people when
they are making speeches, that we should
cultivate the habit of thinking of what we are
doing. The precise opposite is the case.
Civilization advances by extending the num-
ber of important operations which we can
perform without thinking about them. Opera-
tions of thought are like cavalry charges in
a battle—they are strictly limited in num-
ber, they require fresh horses, and must only
be made at decisive moments.

One very important property for symbolism
to possess is that it should be concise, so as to
be visible at one glance of the eye and to be
rapidly written. Now we cannot place sym-

more concisely together than by placing
them in immediate juxtaposition. In a good
symbolism therefore, the juxtaposition of im-
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portant symbols should have an important
meaning. This i1s one of the merits of the
Arabic notation for numbers; by means of
ten symbols, 0, 1, 2, 8, 4, 5, 6, 7, 8, 9, and by
simple juxtaposition it symbolizes any number
whatever. Again in algebra, when we have
two variable numbers # and y, we have to
make a choice as to what shall be denoted by
their juxtaposition 2y. Now the two most
important ideas on hand are those of addition
and multiplication. Mathematicians have
chosen to make their symbolism more concise
by defining @y to stand for @ x y. Thus the

laws (3), (4), and (5) above are in general
written,

ey=yx, (ry)]=z(yz), a(y-+=2)=zy-+ez,
thus securing a great gain in conciseness.
The same rule of symbolism is applied to the
Juxtaposition of a definite number and a vari-
able: wewrite3zfor8 x a, and 802 for 80 x 2.

It is evident that in substituting definite
numbers for the variables some care must be
taken to restore the x, so as not to confliet
with the Arabic notation. Thus when we
substitute 2 for # and 3 for y in 2y, we must

write 2 x 8 for 2y, and not 28 which means
20 + 3.

It is interesting to note how important for
the development of science a modest-looking
symbol may be. It may stand for the em-
phatic presentation of an idea, often a very
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subtle idea, and by its existence make it easy
to exhibit the relation of this idea to all the
complex trains of ideas in which it ocecurs.
For example, take the most modest of all
symbols, namely, 0, which stands for the num-
ber zero. The Roman notation for numbers
had no symbol for zero, and probably most
mathematicians of the ancient world would
have been horribly puzzled by the idea of the
number zero. For, after all, it is a very
subtle idea, not at all obvious. A great deal
of discussion on the meaning of the zero of
quantity will be found in philosophic works.
Zero is not, in real truth, more difficult or
subtle in idea than the other cardinal numbers.
What do we mean by 1 or by 2, or by 87
But we are familiar with the use of these ideas,
though we should most of us be puzzled to
give a clear analysis of the simpler ideas
which go to form them. The point about zero
is that we do not need to use it in the opera-
tions of daily life. No one goes out to buy
zero fish. It is in a way the most civilized
of all the cardinals, and its use is only forced
on us by the needs of cultivated modes of
thought. Many important services are ren-
dered by the symbol 0, which stands for the
number zero.

The symbol developed in connection with
the Arabic notation for numbers of which it
is an essential part. For in that notation the
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value of a digit depends on the position in
which it occurs. Consider, for example, the
digit 5, as occurring in the numbers 25, 51,
8512, 5218. In the first number 5 stands for
five, in the second number 5 stands for fifty,
in the third number for five hundred, and in
the fourth number for five thousand. Now,
when we write the number fifty-one in the
symbolie form 51, the digit 1 pushes the digit
5 along to the second place (reckoning from
right to left) and thus gives it the value fifty.
But when we want to symbolize fifty by itself,
we can have no digit 1 to perform this service ;
we want a digit in the units place to add
nothing to the total and yet to push the 5
along to the second place. This service is
performed by 0, the symbol for zero. It is
extremely probable that the men who intro-
duced 0 for this purpose had no definite con-
ception in their minds of the number zero.
They simply wanted a mark to symbolize the
fact that nothing was contributed by the
digit’s place in which it occurs. The idea of
zero probably took shape gradually from a
desire to assimilate the meaning of this mark
to that of the marks, 1, 2, ... 9, which do re-
present cardinal numbers. This would not
represent the only case in which a subtle idea
has been introduced into mathematics by a
symbolism which in its origin was dictated by
practical convenience.
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Thus the first use of 0 was to make the
arabic notation possible—no slight service,
We can imagine that when it had been intro-
duced for this purpose, practical men, of the
sort who dislike fanciful ideas, deprecated the
silly habit of identifying it with a number
zero. But they were wrong, as such men
always are when they desert their proper
function of masticating food which others have
prepared. For the next service performed by
the symbol 0 essentially depends upon assign-
ing to it the function of representing the
number zero.

This second symbolic use is at first sight
so absurdly simple that it is difficult to make
a beginner realize its importance. Let us
start with a simple example. In
we mentioned the correlation b
variable numbers @ and 4 represented by the
equation 4y =1. This can be represented
in an indefinite number of ways; for example,
2=1=y,y=1—2, 20 +8y—1= & +2y, and so
on. But the important way of stating it is

@*+y—1=0,

the equation 33-—1-2:9.@' .b et
The point is that all the symbols w repre-
sent variables, e.g. # and y, and the symbols

C
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representing some definite number other than
zero, such as 1 or 2 in the examples above,
are written on the left-hand side, so that the
whole left-hand side is equated to the number
zero. The first man to do this is said to
have been Thomas Harriot, born at Oxford
in 1560 and died in 1621. But what is the
importance of this simple symbolic pro-
cedure ? It made possible the growth of the
modern conception of algebraic form.

This is an idea to which we shall have con-
tinually to recur; it is not going too far to
say that no part of modern mathematics can
be properly understood without constant re-
currence to it. The conception of form 1s
so general that it is difficult to characterize
it in abstract terms. At this stage we shall
do better merely to consider examples. Thus
the equations 22 —8=0, 2 —1=0, 52 —6=0,
are all equations of the same form, namely,
equations involving one unknown #, which is
not multiplied by itself, so that 22, 3, ete., do
notappear. Again322—22+4+1=0, 22—82+2
=0, #2—4 =0, are all equations of the same
form,namely,equations involving oneunknown
¢ in which oxa, that is 2, appears. These
equations are called quadratic equations.
Similarly cubic equations, in which 23 appears,
yield another form, and so on. Among the
three quadratic equations given above there
1s a minor difference between the last equa-
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tion, % —4=0, and the preceding two equa-
tions, due to the fact that z (as distinet
from 22) does not appear in the last and
does in the other two. This distinction is
very unimportant in comparison with the
great fact that they are all three quadratic
equations.

Then further there are the forms of equation
stating correlations between two variables:
for example, #+y—1=0, 22 +3y—8=0, and
so on. These are examples of what is called
the linear form of equation. The reason for
this name of *‘linear’ is that the graphie
method of representation, which is explained
at the end of Chapter II, always represents
such equations by a straight line. Then there
are other forms for two variables—for example,
the quadratic form, the cubie form, and so on.
But the point which we here insist upon is
that this study of form is facilitated, and,
indeed, made possible, by the standard method
of writing equations with the symbol 0 on
the right-hand side.

There is yet another function performed by
0 in relation to the study of form. Whatever
number # may be, 0 x =0, and @+0=a.
By means of these properties minor differ-
ences of form can be assimilated. Thus the
difference mentioned above between the quad-
ratic equations 22 —3zx+2 =0, and a2—4 =39,
can be obliterated by writing the latter
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equation in the form #24-(0x2)—4=0. For,
by the laws stated above, a24-(0x2)—4=
22+0—4=a2—4. Hence the equation 22—4
=0, is merely representative of a particular
elass of quadratic equations and belongs to
the same general form as does a2 —3a +2 =0.

For these three reasons the symbol 0, re-
presenting the number zero, 1s essential to
modern mathematics. It has rendered pos-
sible types of investigation which would have
been impossible without it. -

The symbolism of mathematics 1s in truth
the outcome of the general ideas which
dominate the science. We have now two
such general ideas before us, that of the vari-
able and that of algebraic form. The junction
of these concepts has imposed on mathematies
another type of symbolism almost quaint In
its character, but none the less effective. We
have seen that an equation involving two
variables,  and gy, represents a particular
correlation between the pair of variables.
Thus @ +vy —1 =0 represents one definite corre-
lation, and 322y —5=0 represents another
definite correlation between the variables @
and y ; and both correlations have the form
of what we have called linear correlations.
But now, how can we represent any linear
correlation between the variable numbers @
and y? Here we want to symbolize any
lincar correlation ; just as & symbolizes any
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number. Thisis done by turning the numbers
which occur in the definite correlation 8z 42y
—5=0 into letters. We obtain az+by —c=0.
Here a, b, ¢, stand for variable numbers just
as do «# and y : but there 1s a difference 1n the
use of the two sets of variables. We study
the general properties of the relationship be-
tween # and y while a, b, and ¢ have un-
changed values. We do not determine what
the values of a, b, and ¢ are; but whatever
they are, they remain fixed while we study
the relation between the variables # and y
for the whole group of possible values of
and y. But when we have obtained the pro-
perties of this correlation, we note that, be-
cause a, b, and ¢ have not in fact been deter-
mined, we have proved properties which must
belong to any such relation. Thus, by now
varying a, b, and ¢, we arrive at the idea that
ax+by—c=0 represents a variable linear
correlation between @ and y. In comparisen
with # and y, the three variables a, b, and ¢
are called constants. Variables used in this
way are sometimes also called parameters.
Now, mathematicians habitually save the
trouble of explaining which of their variables
are to be treated as ‘‘ constants,” and which
as variables, considered as correlated in their
equations, by using letters at the end of the
alphabet for the °‘ variable’ wvariables, and
letters at the beginning of the alphabet for
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the *‘constant’ wvariables, or parameters.
The two systems meet naturally about the
middle of the alphabet. Sometimes a word
or two of explanation is necessary ; but as a
matter of fact custom and common sense are
usually sufficient, and surprisingly little con-
fusion is caused by a procedure which seems
so lax.

The result of this continual elimination of
definite numbers by successive layers of para-
meters is that the amount of arithmetic per-
formed by mathematicians is extremely small.
Many mathematicians dislike all numerical
computation and are not particularly expert
at it. The territory of arithmetic ends where
the two ideas of *‘ variables ”” and of *‘ alge-
braic form ”’ commence their sway.
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CHAPTER VI

GENERALIZATIONS OF NUMBER

ONE great peculiarity of mathematics is the
set of allied ideas which have been invented
in connection with the integral numbers from
which we started. These ideas may be called
extensions or generalizations of number. In
the first place there is the idea of fractions.
The earliest treatise on arithmetic which we
possess was written by an Egyptian priest,
named Ahmes, between 1700 B.c. and 1100
B.C., and it is probably a copy of a much older
work. It deals largely with the properties of
fractions. It appears, therefore, that this
concept was developed very early in the his-
tory of mathematics. Indeed the subject is
a very obvious one. To divide a field into
three equal parts, and to take two of the
parts, must be a type of operation which had
often occurred. Accordingly, we need not be
surprised that the men of remote civilizations
were familiar with the idea of two-thirds, and

7l
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with allied notions. Thus as the first genera-
lization of number we place the concept of
fractions. The Greeks thought of this sub-
ject rather in the form of ratio, so that a
Greek would naturally say that a line of
two feet in length bears to a line of three
feet in length the ratio of 2 to 8. Under
the influence of our algebraic notation we
would more often say that one line was
two-thirds of the other in length, and would
think of two-thirds as a numerical mul-
tiplier,

In connection with the theory of ratio, or
fractions, the Greeks made a great discovery,
which has been the occasion of a large amount
of philosophical as well as mathematical
thought. They found out the existence of
““ incommensurable ”’ ratios. They proved,
in fact, during the course of their geometrical
investigations that, starting with a line of any
length, other lines must exist whose lengths
do not bear to the original length the ratio
of any pair of integers—or, in other words,
that lengths exist which are not any exact
fraction of the original length.

Forexample, the diagonal of a square cannot
be expressed as any fraction of the side of the

same square; in our modern notation the
length of the diagonal is 4/2 times the length
of the side. But there is no fraction which

exactly represents /2. We can approximate
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to V2 as closely as we like, but we never

exactly reach its value. For example, s 1S
r

25
just less than 2, and z 18 greater than 2, so

that /2 lies between g and g But the best

systematic way of approximating to V2 in
obtaining a series of decimal fractions, each
bigger than the last, is by the ordinary method
of extracting the square root ; thus the series

is 1, 14 141 1414
' 10" 100” 1000
Ratios of this sort are called by the Greeks
incommensurable. They have excited from
the time of the Greeks onwards a great deal
of philosophic discussion, and the difficulties
connected with them have only recently been
cleared up.

We will put the incommensurable ratios
with the fractions, and consider the whole
set of integral numbers, fractional numbers,
and incommensurable numbers as forming
one class of numbers which we will call ** real
numbers.” We always think of the real
numbers as arranged in order of magnitude,
starting from zero and going upwards, and
becoming indefinitely larger and larger as we
proceed. The real numbers are conveniently

, and so on,
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represented by points on a line. Let OX be

1 3 5 7
i N B =

O M A NEBPCQD &%

0

any line bounded at O and stretching away in-
definitely in the direction 0X. Take any con-
venient point, 4, on it, so that OA4 represents
the unit length; and divide off lengths 4B,
BC, CD, and so on, each equal to O4. Then
the point O represents the number 0, 4 the
number 1, B the number 2, and so on. In
fact the number represented by any point is
the measure of its distance from O, in terms
of the unit length O4. The points between

O and 4 represent the proper fractions and
the incommensurable numbers less than 1;

the middle point of O4 represents %, that of

AB represents g, that of BC represents g, and
so on. In this way every point on OX repre-
sents some one real number, and every real

l(i)ll;lber is represented by some one point on

~ The series (or row) of points along OX,
starting from O and moving regularly in the
direction from O to X, represents the real
numbers as arranged in an ascending order
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of size, starting from zero and continually
Increasing as we go on.

All this seems simple enough, but even at
this stage there are some interesting ideas to
be got at by dwelling on these obvious facts.
Consider the series of points which represent
the integral numbers only, namely, the points,
0,4, B, C, D, etc. Here there is a first point
0O, a definite next point, 4, and each point,
such as 4 or B, has one definite immediate
predecessor and one definite immediate sue-
cessor, with the exception of 0, which has no
predecessor; also the series goes on in-
definitely without end. This sort of order is
called the type of order of the integers ; its
essence 1s the possession of next-door neigh-
bours on either side with the exception of
No. 1 in the row. Again consider the integers
and fractions together, omitting the points
which correspond to the incommensurable
ratios. The sort of serial order which we now
obtain is quite different. There is a first
term O; but no term has any immediate pre-
decessor or immediate successor. This is
easily seen to be the case, for between any
two fractions we can always find another
fraction intermediate in value. One very
simple way of doing this is to add the fractions .
together and to halve the result. For ex-
ample, between § and §, the fraction § (§+ i),
that is i{, lies; and between % and #f the
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fraction 3 (3 4 1]), that is {%, lies; and so on
indefinitely. Because of this property the
series is said to be ‘‘ compact.” There 1s no
end point to the series, which increases in-
definitely without limit as we go along the
line OX. It would seem at first sight as
though the type of series got in this way from
the fractions, always including the integers,
would be the same as that got from all the
real numbers, integers, fractions, and incom-
mensurables taken together, that is, from all
the points on the line 0X. All that we have
hitherto said about the series of fractions
applies equally well to the series of all real
numbers. But there are important differ-
ences which we now proceed to develop. The
absence of the incommensurables from the
series of fractions leaves an absence of end-
points to certain classes. Thus, consider the

incommensurable 4/2. In the series of real
numbers this stands between all the numbers
whose squares are less than 2, and all the
numbers whose squares are greater than 2.
But keeping to the series of fractions alone
and not thinking of the incommensurables, so
that we cannot bring in 4/2, there is no frac-
tion which has the property of dividing off
the series into two parts in this way, i.e. so
that all the members on one side have their
squares less than 2, and on the other side
greater than 2. Hence in the series of frae-
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tions there is a quasi-gap where v/2 ought to
come. This presence of quasi-gaps in the
series of fractions may seem a small matter;
but any mathematician, who happens to read
this, knows that the possible absence of limits

- or maxima to a class of numbers, which yet

does not spread over the whole series of num-
bers, is no small evil. It is to avoid this
difficulty that recourse is had to the incom-
mensurables, so as to obtain a complete series
with no gaps.

There is another even more fundamental
difference between the two series. We can
rearrange the fractions in a series like that of
the integers, that is, with a first term, and
such that each term has an immediate sue-
cessor and (except the first term) an immediate
predecessor. We can show how this can be
done. Let every term in the series of fractions
and integers be written in the fractional form
by writing } for 1, § for 2, and so on for all the
integers, excluding 0. Also for the moment
we will reckon fractions which are equal In
value but not reduced to their lowest terms
asdistinet ; so that, for example, until further
notice %, &, §, %, etc., are all reckoned as dis-
tinct. Now group the fractions into classes
by adding together the numerator and de-
nominator of each term. For the sake of
brevity call this sum of the numerator and
denominator of a fraction its index. Thus 7
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ia the index of &, and also of §, and of . Let
the fractions in each class be all fractions
which have some specified index, which may
therefore also be called the class index. Now
arrange these classes in the order of magni-
tude of their indices. The first class has
the index 2, and its only member 1s §; the
second class has the index 3, and its members
are 3 and ?; the third class has the index
4, and its members are %, §, 7; the fourth
class has the index 5, and its members are
1, %, 2, 4; and so on. It is easy to see that
the number of members (still including frac-
tions not in their lowest terms) belonging to
any class is one less than its index. Also the
members of any one class can be arranged
in order by taking the first member to be the
fraction with numerator 1, the second mem-
ber to have the numerator 2, and so on, up to
(n—1) where n is the index. Thus for the

class of index n, the members appear in the
order.

1 2 3 n—1
el - sy T 1
bers of the first four classes have in fact been
mentioned in this order. Thus the whole set

of fractions have now been arranged in an
order like that of the integers. It runs thus

1121[2 312 3 4
:113:2! o

132 1’4'3'2'lell'

The mem-
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n—2 1 . 3 n—1

1
y 259
T

and so on.

Now we can get rid of all repetitions of
fractions of the same value by simply striking
them out whenever they appear after their
first occurrence. In the few initial terms
written down above, Z which is enclosed above
in square brackets is the only fraction not in
its lowest terms. It has occurred before as
1, Thus this must be struck out. But the
series is still left with the same properties,
namely, (a) there is a first term, () each term
has next-door neighbours, (¢) the series goes
on without end.

It can be proved that it is not possible to
arrange the whole series of real numbers in
this way. This curious fact was discovered
by Georg Cantor, a German mathematician
still living ; it is of the utmost importance
in the philosophy of mathematical ideas. We
are here in fact touching on the fringe of the
great problems of the meaning of continuity
and of infinity.

Another extension of number comes from
the introduction of the idea of what has been
variously named an operation or a step,
names which are respectively appropriate
from slightly different points of view. We
will start with a particular case. Consider
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the statement 24-8=5. We add 3 to 2 and
obtain 5. Think of the operation of adding
3: let this be denoted by +38. Again 4—3
=1. Think of the operation of subtracting
3 : let this be denoted by —8. Thus instead
of considering the real numbers in themselves,
we consider the operations of adding or sub-

tracting them : instead of 1/2, we consider

+42 and —+/2, namely the operations of

adding v/2 and of subtracting /2. Then we
can add these operations, of course in a
different sense of addition to that in which we
add numbers. The sum of two operations is
the single operation which has the same effect
as the two operations applied successively.
In what order are the two operations to be

applied ? The answer is that it is indifferent,
since for example

24+8+4+1=2+4+1+438;

so that the addition of the steps +8 and +1
1s commutative.

Mathematicians have a habit, which is
puzzling to those engaged in tracing out
meanings, but is very convenient in practice,
of using the same symbol in different though
allied senses. The one essential requisite for
a symbol in their eyes is that, whatever its
possible varieties of meaning, the formal laws
for its use shall always be the same. In
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accordance with this habit the addition of
operations i1s denoted by -+ as well as the

addition of numbers. Accordingly we can
write

(+8)+(+1)=+4;

where the middle 4+ on the left-hand side
denotes the addition of the operations +3
and +41. DBut, furthermore, we need not be
so very pedantic in our symbolism, except in
the rare instances when we are direetly tracing
meanings ; thus we always drop the first +
of a line and the brackets, and never write

two -+ signs running. So the above equation
becomes

3+1=4,

which we interpret as simple numerical addi-
tion, or as the more elaborate addition of
operations which is fully expressed in the
previous way of writing the equation, or
lastly as expressing the result of applying
the operation +1 to the number 8 and ob-
taining the number 4. Any interpretation
which is possible is always correct. But the
only interpretation which is always possible,
under certain conditions, is that of operations.
The other interpretations often give non-
sensical results. _
This leads us at once to a question, which
must have been rising insistently in the
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reader’s mind: What is the use of all this
elaboration ? At this point our friend, the
practical man, will surely step in and insist on
sweeping away all these silly cobwebs of the
brain. The answer is that what the mathe-
matician is seeking is Generality. 'This is an
idea worthy to be placed beside the notions
of the Variable and of Form so far as concerns
its importance in governing mathematical
procedure. Any limitation whatsoever upon
the generality of theorems, or of proofs, or of
interpretation is abhorrent to the mathe-
matical instinet. These three notions, of the
variable, of form, and of generality, compose
a sort of mathematical trinity which preside
over the whole subject. They all really
spring from the same root, namely from the
abstract nature of the science.

Let us see how generality is gained by the
introduction of this idea of operations. Take
the equation #+1=3; the solution 1s #=2.
Here we can interpret our symbols as mere
numbers, and the recourse to *‘ operations ™
1s entirely unnecessary. But, if # 1s a mere
number, the equation #+3=1 is nonsense.
For # should be the number of things which
remain when you have taken 3 things away
from 1 thing; and no such procedure is
possible. At this point our idea of algebraic
form steps in, itself only generalization under
another aspect. We consider, therefore, the



