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whether the train has been running uniformly
or not entirely depends on the standard of
time which we adopt.

Now, for all ordinary purposes of life on the
earth, the various astronomical recurrences
may be looked on as absolutely consistent :
and, furthermore assuming their consistency,
and thereby assuming the velocities and
changes of velocities possessed by bodies, we
find that the laws of motion, which have
been considered above, are almost exactly
verified. But only almost exactly when we
come to some of the astronomical phenomena.
We find, however, that by assuming slightly
different wvelocities for the rotations and
motions of the planets and stars, the laws
would be exactly verified. This assumption
is then made ; and we have, in fact thereby,
adopted a measure of time, which is indeed
defined by reference to the astronomieal
phenomena, but not so as to be consistent
with the uniformity of any one of them. But
the broad fact remains that the uniform flow
of time on which so much is based, is itself
dependent on the observation of periodie
events.

Even phenomena, which on the surface
seem casual and exceptional, or, on the other
hand, maintain themselves with a uniform
persistency, may be due to the remote influ-

ence of periodicity. Take for example, the
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principle of resonance. Resonance arises
when two sets of connected circumstances
have the same periodicities. It is a dynami-
cal law that the small vibrations of all bodies
when left to themselves take place in definite
times characteristic of the body. Thus a
pendulum with a small swing always vibrates
in some definite time, characteristic of its shape
and distribution of weight and length. A more
complicated body may have many ways of
vibrating ; but each of its modes of vibration
will have its own peculiar * period.” Those
periods of vibration of a body are called its
“free ”’ periods. Thus a pendulum has but
one period of vibration, while a suspension
bridge will have many. We get a musical
instrument, like a violin string, when the
periods of vibration are all simple submultiples
of the longest ; ¢.e. if ¢ seconds be the longest
period, the others are 1¢, ¢, and so on, where
any of these smaller periods may be absent.
Now, suppose we excite the vibrations of a
body by a cause which is itself periodic;
then, if the period of the cause is very nearly
that of one of the periods of the body, that
mode of vibration of the body is very violently
excited ; even although the magnitude of the
exciting cause is small. This phenomenon is
called *‘ resonance.” The general reason is
easy to understand. Any one wanting to
upset a rocking stone will push “in tune”
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with the oscillations of the stone, so as always
to secure a favourable moment for a push.
If the pushes are out of tune, some increase
the oscillations, but others check them. But
when they are in tune, after a time all the
pushes are favourable. The word * reson-
ance ' comes from considerations of sound :
but the phenomenon extends far beyond the
region of sound. The laws of absorption and
emission of light depend on it, the * tuning ”’
of receivers for wireless telegraphy, the com-
parative 1mportance of the influences of
planets on each other’s motion, the danger
to a suspension bridge as troops march over
it in step, and the excessive vibration of some
ships under the rhythmical beat of their
machinery at certain speeds. This coinci-
dence of periodicities may produce steady
phenomena when there is a constant associ-
ation of the two periodic events, or it may
produce violent and sudden outbursts when
the association is fortuitous and temporary.

Again, the characteristic and constant
periods of vibration mentioned above are
the underlying causes of what appear to
us as steady excitements of our senses. We
work for hours in a steady light, or we listen
to a steady unvarying sound. But, if modern
science be correct, this steadiness has no
counterpart in nature. The steady light is
due to the impact on the eye of a countless
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number of periodic waves in a vibrating ether,
and the steady sound to similar waves in a
vibrating air. It is not our purpose here to
explain the theory of light or the theory of
sound. We have said enough to make it
evident that one of the first steps necessary
to make mathematics a fit instrument for the
investigation of Nature is that it should be
able to express the essential periodicity of
things. If we have grasped this, we ecan
understand the importance of the mathe-
matical conceptions which we have next to
consider, namely, periodic functions.
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CHAPTER XIII

TRIGONOMETRY

TricoNoMETRY did not take its rise from
the general consideration of the periodicity of
nature. In this respect its history is analo-
gous to that of conic sections, which also had
their origin in very particular ideas. Indeed,
a comparison of the histories of the two
sciences yields some very instructive analogies
and contrasts. Trigonometry, like conic sec-
tions, had its origin among the Greeks. Its
inventor was Hipparchus (born about 160
B.c.), a Greek astronomer, who made his
observations at Rhodes. His services to
astronomy were very great, and it left his

hands a truly scientific subject with important
results established, and the right method of

progress indicated. Perhaps the invention
of trigonometry was not the least of these
services to the main science of his study. The

next man who extended trigonometry was
Ptolemy, the great Alexandrian astronomer,

whom we have already mentioned. We now
173
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see at once the great contrast between conie
sections and trigonometry. The origin of
trigonometry was practical ; it was invented
because it was necessary for astronomical re-
search. The origin of conic sections was
purely theoretical. The only reason for its
initial study was the abstract interest of the
ideas involved. Characteristically enough
conic sections were invented about 150 years
earlier than trigonometry, during the very
best period of Greek thought. But the im-
portance of trigonometry, both to the theory
and the application of mathematies, is only
one of innumerable instances of the fruitful
ideas which the general science has gained
from its practical applications.

We will try and make clear to ourselves
what trigonometry is, and why it should be
generated by the scientific study of astronomy.
In the first place: What are the measure-
ments which can be made by an astronomer ?
They are measurements of time and measure-
ments of angles. The astronomer may adjust
a telescope (for it is easier to discuss the
familiar instrument of modern astronomers)
so that it can only turn about a fixed axis
pointing east and west; the result is that
the telescope can only point to the south, with
a greater or less elevation of direction, or, if
turned round beyond the zenith, point to the
north. This is the transit instrument, the
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great instrument for the exact measurement
of the times at which stars are due south or
due north. But indirectly this instrument
measures angles. For when the time elapsed
between the transits of two stars has been
noted, by the assumption of the uniform
rotation of the earth, we obtain the angle
through which the earth has turned in that
period of time. Again, by other instruments,
the angle between two stars can be directly
measured. For if E is the eye of the astrono-

A

E
Fig. 22.

mer, and E4 and EB are the directions in
which the stars are seen, it is easy to devise
instruments which shall measure the angle
AEB. Hence, when the astronomer is form-
ing a survey of the heavens, he is, in fact,
measuring angles so as to fix the relative
directions of the stars and planets at any in-

stant. Again, in the analogous problem

*
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land-surveying, angles are the chief subject
of measurements. The direct measurements
of length are only rarely possible with any
accuracy ; rivers, houses, forests, mountains,
and general irregularities of ground all get In
the way. The survey of a whole country will
depend only on one or two direct measure-
ments of length, made with the greatest
elaboration in selected places like Salisbury
Plain. The main work of a survey is the
measurement of angles. For example, 4, B,
and C will be conspicuous points in the dis-

B

Fig. 23.

triet surveyed, say the tops of church towers.
These points are visible each from the others.
Then it is a very simple matter at 4 to
measure the angle BAC, and at B to measure
the angle 4BC, and at C to measure the angle
BCA. Theoretically, it is only necessary to
measure two of these angles; for, by a well-
known proposition in geometry, the sum of
the three angles of a triangle amounts to two
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right-angles, so that when two of the angles
are known, the third can be deduced. It 1s
better, however, in practice to measure all
three, and then any small errors of observa-
tion can be checked. In the process of map-
making a country is completely covered with
triangles in this way. This process is called
triangulation, and is the fundamental process
in a survey.

Now, when all the angles of a triangle are
known, the shape of the triangle 1s known—
that is, the shape as distinguished from the
size. We here come upon the great principle
of geometrical similarity. The idea 1s very
familiar to us in its practical applications.
We are all familiar with the idea of a plan
drawn to scale. Thus if the scale of a plan
be an inch to a yard, a length of three inches
in the plan means a length of three yards in
the original. Also the shapes depicted in the
plan are the shapes in the original, so that a
right-angle in the original appears as a right-
angle in the plan. Similarly in a map, which
is only a plan of a country, the proportions
of the lengths in the map are the proportions
of the distances between the places indicated,
and the directions in the map are the diree-
tions in the country. For example, if in the
map one place is north-north-west of the
other, so it is in reality ; that is to say, in a
map the angles are the same as in reality.
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Geometrical similarity may be defined thus:
Two figures are similar (i) if to any point
in one figure a point in the other figure
corresponds, so that to every line there is a
corresponding line, and to every angle a
corresponding angle, and (ii) if the lengths
of corresponding lines are in a fixed propor-
tion, and the magnitudes of corresponding
angles are the same. The fixed proportion
of the lengths of corresponding lines in a map
(or plan) and in the original is called the scale
of the map. The scale should always be
indicated on the margin of every map and
plan. It has already been pointed out that
two triangles whose angles are respectively
equal are similar. Thus, if the two triangles

4

£ E’ - E F
Fig. 24.

ABC and DEF have the angles at 4 and D
equal, and those at B and E, and those at C

and F, then DE is to 4B in the same propor- :
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tion as KF 1s to BC, and as FD is to CA4.
But it 1s not true of other figures that simi-
larity 1s guaranteed by the mere equality of
angles. Take for example, the familiar cases
of a rectangle and a square, Let ABCD be
a square, and ABEF be a rectangle. Then
all the corresponding angles are equal. But

A D F
8 C E
Fig. 25.

whereas the side 4B of the square is equal to
the side 4B of the rectangle, the side BC of
the square is about half the size of the side
BE of the rectangle. Hence it is not true
that the square ABCD is similar to the rect-

angle ABEF. This peculiar property of the
triangle, which is not shared by other recti-

linear figures, makes it the fundamental
figure in the theory of similarity. Hence in
surveys, triangulation is the fundamentn.l
process ; and hence also arises the word ** tri-
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gonometry,” derived from the two Greek
words #rigonon a triangle and mefria measure-
ment. The fundamental question from which
trigonometry arose 1s this: Given the magni-
tudes of the angles of a triangle, what can be
stated as to the relative magnitudes of the
sides. Note that we say *‘ relative magnitudes
of the sides,” since by the theory of similarity
it 1s only the proportions of the sides which
are known. In order to answer this ques-
tion, certain functions of the magnitudes of
an angle, considered as the argument, are in-
troduced. In their origin these functions
were got at by considering a right-angled tri-
angle, and the magnitude of the angle was
defined by the length of the are of a circle.
In modern elementary books, the funda-
mental position of the are of the circle as de-
fining the magnitude of the angle has been
pushed somewhat to the background, not to
the advantage either of theory or clearness
of explanation. It must first be noticed
that, in relation to similarity, the circle holds
the same fundamental position among curvi-
linear figures, as does the triangle among
rectilinear figures. Any two circles are simi-
lar figures; they only differ in scale. The
lengths of the circumferences of two circles,
such as 4PA4’ and A1P1A'1 in the ﬁg. 26 are
in proportion to the lengths of their radii.
Furthermore, if the two circles have the same
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centre O, as do the two circles in fig. 26, then
the arcs 4P and 4P, intercepted by the
arms of any angle 40P, are also in propor-
tion to their radii. Hence the ratio of the

&

Fig. 26.

length of the arc 4P to the length of the

arc AP

radius OP, that 1s —— is a number which

radius OP

is quite independent of the length OP, and is
: » arc AjP 1 : g
the same as thefraction T This frac

tion of ““ arc divided by radius ” is the proper
theoretical way to measure the magnitude of
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an angle ; for it 1s dependent on no arbitrary
unit of length, and on no arbitrary way of
dividing up any arbitrarily assumed angle,

such as a right-angle., Thus the fraction f—l—f

04
represents the magnitude of the angle 40P.

Now draw PM perpendicularly to O4. Then
the Greek mathematicians called the line PM
the sine of the arc 4P, and the line OM the
cosine of the arc AP. They were well aware
that the importance of the relations of these
various lines to each other was dependent on
the theory of similarity which we have just
expounded. But they did not make their
definitions express the properties which arise
from this theory. Also they had not in their
heads the modern general ideas respecting
functions as correlating pairs of variable num-
bers, nor in fact were they aware of any
modern conception of algebra and algebraic
analysis. Accordingly, it was natural to
them to think merely of the relations between
certain lines in a diagram. For us the case
1s different: we wish to embody our more
powerful ideas.

Hence, in modern mathematics, instead

of considering the arec 4P, we consider
AP

the fraction 0P’ which is a number the ,'
same for all lengths of OP; and, instead of
considering the lines PM and OM, we con-
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. T OM : .
sider the fractions OP and ) which again

are numbers not dependent on the length of

OP, i.e. not dependent on the scale of our
PM

diagrams. Then we define the number — -

OFP
to be the sine of the number ?—4. and the

OP
number 9—1—4 to be the cosine of the number

OP
I(;;A: These fractional forms are clumsy to

print ; so let us put u for the fraction g—g,

which represents the magnitude of the angle
PM

AOP, and put v for the fraction OP’ and w
for the fraction ?)11"1 Then u, v, w, are num-

bers, and, since we are talking of any angle
AOP, they are variable numbers. But a
correlation exists between their magnitudes,
so that when u (i.e. the angle 40P) is given
the magnitudes of v and w are definitely deter-
mined. Hence v and w are functions of the
argument u. We have called v the sine of
u, and w the cosine of w. We wish to adapt

the general functional notation y=f(z) to
these special cases: so in modern mathe-
matics we write sin for *“ f”’ when we want to

P e
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indicate the special function of *‘ sine,” and
“cos” for *“f” when we want to indicate
the special function of “‘ cosine.” Thus, with
the above meanings for u, v, w, we get

v=8in u, and w=cos u,

where the brackets surrounding the @ in /()
are omitted for the special functions. The
meaning of these functions sin and cos as
correlating the pairs of numbers » and v, and
u and w is, that the functional relations are to
be found by constructing (cf. fig. 26) an angle
AOP, whose measure ** 4P divided by OP ”
is equal to u, and that then v is the number
given by “ PM divided by OP ” and w is the
number given by *“OM divided by OP.”
Itis evident that without some further defi-
nitions we shall get into difficulties when the
number u is taken toolarge. For then the arec
AP may be greater than one-quarter of the
circumference of the circle, and the point M
(¢f. figs. 26 and 27) may fall between O and A’
and not between O and 4. Also P may be
below the line 404’ and not above it as in

fig. 26. In order to get over this difficulty
we have recourse to the ideas and conven-

of the sine and cosine.
arm Od4 of the angle be the axis
OX, and produce the axis backwards to
obtain its negative part OX’. Draw the
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other axis YOY' perpendicular to it. Let
any point P at a distance r from O have
coordinates # and y. These coordinates are
both positive in the first ‘“quadrant™ of
the plan, e.g. the coordinates # and y of

Y8

Pt Plry)

Fig. 27.

P in fig. 27. In the other quadrants, either
one or both of the coordinates are negative,
for example, 2’ and y for P, and 2’ and ¥’
for P”, and @ and y' for P"’ in fig. 27, where
2’ and y' are both negative numbers. The

positive angle POA 1s the arc AP divided
by r, its sine is % and its cosine 18 ;; the posi-
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tive angle AOP" is the arc ABP’ divided by 7,

- ® " ? " x’l L1 L]
its sine is 7 and cosine = the positive angle
r

AOP" is the arc ABA'P”" divided by r, its

’ /

sine is ¢ and its cosine 1s % ! the positive
r

angle AOP"" is the arc ABA'B'P’" divided

by r, its sine is 3: and its cosine is "

But even now we have not gone far enough.
For suppose we choose u to be a number
greater than the ratio of the whole circum-
ference of the circle to its radius. Owing to
the similarity of all circles this ratio is the
same for all circles. It is always denoted in
mathematics by the symbol 27, where
1s the Greek form of the letter p and its
name in the Greek alphabet is * pi.” It can
be proved that = is an incommensurable
number, and that therefore its value cannot
be expressed by any fraction, or by any
terminating or recurring decimal. Its value
to a few decimal places is 814159 ; for many
purposes a sufliciently accurate approximate

value is ?,—73 Mathematicians can easily cal-

culate = to any degree of accuracy required,
just as v/2 can be so calculated. Its value

has been actually given to 707 places of
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decimals. Such elaboration of ecaleulation is
merely a curiosity, and of no practical or
theoretical interest. The accurate deter-
mination of 7 is one of the two parts of
the famous problem of squaring the circle.
The other part of the problem is, by the
theoretical methods of pure geometry to
describe a straight line equal in length to the
circumference. Both parts of the problem
are now known to be impossible; and the
insoluble problem has now lost all special
practical or theoretical interest, having be-
come absorbed in wider ideas.

After this digression on the value of =, we
now return to the question of the general
definition of the magnitude of an angle, so as
to be able to produce an angle corresponding
to any value u. Suppose a moving point, @,
to start from 4 on OX (cf. fig. 27), and to rotate
in the positive direction (anti-clockwise, in
the figure considered) round the circumference
of the circle for any number of times, finally
resting at any point, e.g. at P or P’ or P’ or
P’”. Then the total length of the curvilinear
circular path traversed, divided by thg I:adius
of the circle, r, is the generalized definition of
a positive angle of any size. Leta,y be the
coordinates of the point in which the point @
rests, i.e.in one of the four alternative positions
mentioned in fig. 27 ;  and y (as here used) will
either z and v, or 2" and y, or @’ and y', or z
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and y'. Then the sign of this generalized
E{ and its cosine is '; With these
definitions the functional relations vV=8In u
and w=cos u, are at last defined for all posi-
tive real values of u. For negative values of
u we simply take rotation of @ in the opposite
(clockwise) direction ; but it is not worth our
while to elaborate further on this point, now
that the general method of procedure has
been explained.

These functions of sine and cosine, as thus
defined, enable us to deal with the problems
concerning the triangle from which Trigono-
melry took its rise. But we are now in a
position to relate Trigonometry to the wider
idea of Periodicity of which the Importance
was explained in the last chapter. It is easy
to see that the functions sin % and cos % are
periodic functions of w. For consider the
position, P (in fig. 27), of a moving point, @,
which has started from 4 and revolved round
the circle. This position, P, marks the angles

are ;4P’ e o _I_arcrAP. A i +arcrAP’

and 6 7427 AP

angle 1s

, and so on indefinitely, Now,
all these angles have the same sine and cosine,

namely, g and f. Hence it is easy to see that,
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I u be chosen to have any value, the argu-
ments u and 2 74w, and 4w +u, and 67 +u,
and 87+u and so on indefinitely, have all the

same values for the corresponding sines and
cosines. In other words,

sIn % =s8in (27 4u)=sin (47 +u)=sin (67 +u)
=ete. ¢

COS U =¢0S (27 +u) =cos (47 +u)=cos (67 +u)
=elc.

This fact is expressed by saying that sin » and
cos u are periodic functions with their period
equal to 2.

The graph of the function y=sin @ (notice
that we now abandon v and u for the more
familiar y and 2) is shown in fig. 28. We take
on the axis of # any arbitrary length at pleasure
to represent the number 7, and on the axis
of y any arbitrary length at pleasure toxepre-
sent the number 1. The numerical values of
the sine and cosine can never exceed unity.
The recurrence of the figure after periods of
27+ will be noticed. This graph represents the

simplest style of periodic function, out of
which all others are constructed. The cosine

gives nothing fundamentally different from the
sine. For it is easy to prove that cos 2=

Sin (w+;j); hence it can be seen that the
graph of cos @ is simply fig. 28 modified by
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drawing the axis of OY through the point
on OX marked Z, instead of drawing it in

its actual position on the figure.
It is easy to construct a ‘ sine’ function In

!

{
AV AT AT
fl Jaz ' .-

Fig. 28.

which the period has any assigned value a.
For we have only to write :

e 2w
g P
and then
sin w =sin{g1r_m +2"JT} = singz_m.
a a a

Thus the period of this new function is now a.
Let us now give a general definition of what
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we mean by a periodic function. The function
{(z) is periodie, with the period a, if (i) for any
value of # we have f(z)=f(x+a), and (ii) there
is no number b smaller than a such that for
any value of 2, f(z)=f(x+0b).
The second clause 1s put into the definition
2T
a

periodic in the period a, but also in the periods
2a and 8a, and so on ; this arises since

Sin27r(a: :—30) - sin(?irE +67r) =S§In ?—T—z

a a
So it is the smallest period which we want to
get hold of and call the period of the function.
The greater part of the abstract theory of
periodic functions and the whole of the appli-
cations of the theory to Physical Science are
dominated by an important theorem called
Fourier’s Theorem ; namely that, if f(z) be a
periodic function with the period a and if f(z)
also satisfies certain conditions, which practic-
ally are always presupposed in functions sug-
gested by natural phenomena, then f(z) can
be written as the sum of a set of terms in the

form

because when we have sin

, 1t 1s not only
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In this formula ¢o, ¢y, €2, ¢3, ete., and also
e,, €2, e3, ete., are constants, chosen so as to
suit the particular function. Again we have
to ask, How many terms have to be chosen ?
And here a new difficulty arises : for we can
prove that, though in some particular cases a
definite number will do, yet in general all we
can do is to approximate as closely as we like
to the value of the function by taking more
and more terms. This process of gradual
approximation brings us to the consideration
of the theory of infinite series, an essential
part of mathematical theory which we will
consider in the next chapter.

The above method of expressing a periodie
function as a sum of sines is called the *" har-
monic analysis’ of the function. For ex-
ample, at any point on the sea coast the tides
rise and fall periodically. Thus at a point
near the Straits of Dover there will be two
daily tides due to the rotation of the earth.
The daily rise and fall of the tides are com-
plicated by the fact that there are two tidal
waves, one coming up the English Channel,
and the other which has swept round the
North of Scotland, and has then come south-
ward down the North Sea. Again some high
tides are higher than others: this is due to
the fact that the Sun has also a tide-generating
influence as well as the Moon. In this way
monthly and other periods are introduced.
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We leave out of account the exceptional in-
fluence of winds which cannot be foreseen.
The general problem of the harmonie analysis
of the tides is to find sets of terms like those
in the expression on page 191 above, such that
each set will give with approximate accuracy
the contribution of the tide-generating influ-
ences of one *‘ period ”’ to the height of the
tide at any instant. The argument z will
therefore be the time reckoned from any con-
venient commencement.

Again, the motion of vibration of a violin
string is submitted to a similar harmonie
analysis, and so are the vibrations of the
ether and the air, corresponding respectively
to waves of light and waves of sound. We
are here in the presence of one of the funda-
mental processes of mathematical physies—
namely, nothing less than its general method
of dealing with the great natural fact of

Periodiecity.
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SERIES

No part of Mathematics suffers more from
the triviality of its initial presentation to
beginners than the great subject of series.
Two minor examples of series, namely arith-
metic and geometric series, are considered ;
these examples are important because they
are the simplest examples of an important
general theory., But the general ideas are
never disclosed ; and thus the examples,which
exemplify nothing, are reduced to silly triviali-
ties.

The general mathematical idea of a series
is that of a set of things ranged in order, that
is, in sequence. This meaning is accurately
represented in the common use of the term.
Consider for example, the series of English
Prime Ministers during the nineteenth century,
arranged in the order of their first tenure of
that office within the century. The series
commences with William Pitt, and ends with
Lord Rosebery, who, appropriately enough,
is the biographer of the first member. We

104
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might have considered other serial orders for
the arrangement of these men; for example,
according to their height or their weight.
These other suggested orders strike us as
trivial in connection with Prime Ministers,
and would not naturally occur to the mind ;

but abstractly they are just as good orders
as any other. When one order among terms

1s very much more important or more obvious
than other orders, it is often spoken of as the
order of those terms. Thus the order of the
integers would always be taken to mean their
order as arranged in order of magnitude. But
of course there is an indefinite number of
other ways of arranging them. When the
number of things considered 1is finite, the
number of ways of arranging them in order is
called the number of their permutations. The
number of permutations of a set of n things,
where n is some finite integer, is

nx(n—1)x(n—2)x(n—38)x... x4 x3 x2x1

that is to say, it is the product of the first n
integers ; this product is so important In
mathematics that a special symbolism is used
for it, and it is always written ‘n!’ Thus,
21 =2x1=2, and 8!=8x2x1=6, and 4 !=4
x8x2x1=24, and 5!=5x4x8x2x1=120.
As n increases, the value of n ! increases very
quickly ; thus 100! is a hundred times as

large as 99 !
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It is easy to verify in the case of small
values of n that n! is the number of ways
of arranging » things in order. Thus con-
sider two things a and b ; these are capable
of the two orders ab and ba, and 2 | =2.

Again, take three things a, b, and ¢; these
are capable of the six orders, abe, acbh, bac,
bea, cab, c¢ba, and 3!=6. Similarly for the
twenty-four orders in which four things a, b,
¢, and d, can be arranged.

When we come to the infinite sets of things
—like the sets of all the integers, or all the
fractions, or all the real numbers for instance
—we come at once upon the complieations of
the theory of order-types. This subject was
touched upon in Chapter VI. in eonsidering
the possible orders of the integers, and of the
fractions, and of the real numbers. The
whole question of order-types forms a com-
paratively new branch of mathematics of
great importance. We shall not consider it
any further. All the infinite series which we
consider now are of the same order-type as
the integers arranged in ascending order of
magnitude, namely, with a first term, and
such that each term has a couple of next-
door neighbours, one on either side, with the

exception of the first term which has, of

course, only one next-door neighbour. Thus,
if m be any integer (not zero), there will be

always an mth term. A series with a finite
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number of terms (say n terms) has the same
characteristics as far as next-door neighbours
are concerned as an infinite series; it only
differs from infinite series in having a last
term, namely, the nth.

The important thing to do with a series of
numbers—using for the future * series’ in
the restricted sense which has just been men-
tioned—is to add its successive terms to-
gether,.

Thus if w, %2, %3, « « « tn. . « &r€ rESpee-
tively the 1st, 2nd, 8rd, 4th, . .. ol s i
terms of a series of numbers, we form succes-
sively the series uy, uy+u2, U1 +ua+us, -+
W, +u3+uyg, and so on; thus the sum of the
1st n terms may be written.

Uy +uz+us+ « « «t+Un

If the series has only a finite number of
terms, we come at last in this way to the
sum of the whole series of terms. But, if
the series has an infinite number of terms,
this process of successively forming the sums
of the terms never terminates; and in this
sense there is no such thing as the sum of an
infinite series. .

But why is it important successively to add
the terms of a series in this way ? The answer
is that we are here symbolizing the funda-
mental mental process of approximation.

This is a process which has significance far
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beyond the regions of mathematics. Our
limited intellects cannot deal with compli-
cated material all at once, and our method of
arrangement 1s that of approximation. The
statesman In framing his speech puts the
dominating issues first and lets the details
fall naturally into their subordinate places.
There i1s, of course, the converse artistic
method of preparing the imagination by the
presentation of subordinate or special details,
and then gradually rising to a erisis. In
either way the process is one of gradual sum-
mation of effects; and this is exactly what
1s done by the successive summation of the
terms of a series. Our ordinary method of
stating numbers is such a process of gradual
summation, at least, in the case of large

numbers. Thus 568,218 presents itself to
the mind as—

200,000 +-60,000 48,000 420041048

In the case of decimal fractions this is so
more avowedly. Thus 8-14159 is—

8+ +rbu+rdvs+ rodon + rodeos

Also, 8 and 8+, and 3+ +18s and 844

+1é5+1vor 80d 8+ +rby+ roirs +robys AT
successive approximations to the complete re-
sult 3-14159, If we read 568,218 backwards

from right to left, starting with the 8 units,
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we read it in the artistic way, gradually pre-
paring the mind for the crisis of 500,000.
The ordinary process of numerical multi-
plication proceeds by means of the summa-
tion of a series. Consider the computation

342
658
2736
1710
2052
225036

Hence the three lines to be added form a
series of which the first term is the upper
line. This series follows the artistic method
of presenting the most important term last,
not from any feeling for art, but because of
the convenience gained by keeping a firm
hold on the units’ place, thus enabling us to
omit some 0’s, formally necessary.

But when we approximate by gradually
adding the successive terms of an infinite
series, what are we approximating to? The
difficulty is that the series has no *““ sum ™ in
the straightforward sense of the word, because
the operation of adding together its terms
can never be completed. The answer is that
we are approximating to the limit of the
summation of the series, and we must now
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proceed to explain what the " limit ™ of a
series 18,

The summation of a series approximates to
a limit when the sum of any number of its
terms, provided the number be large enough,
is as nearly equal to the limit as you care to
approach. But this description of the mean-
ing of approximating to a limit evidently will
not stand the vigorous scrutiny of modern
mathematics. What 1s meant by large
enough, and by nearly equal, and by care to
approach ¥ All these vague phrases must be
explained in terms of the simple abstract
ideas which alone are admitted into pure
mathematics.

Let the successive terms of the series be
Uy, Ug, U, Ug, .. .y Uy, €te., so that u, is the
nth term of the series. Also let s, be the

sum of the 1st n terms, whatever n may be.
S0 that—

81 =11, S2=1Uy+Us, 8§3=1U; +Us+U3z, and
Sp=Ust+Ua+US+ . + « FUgy

Then the terms sy, 82, 83, . « . 84, . . . fOrm
a new series, and the formation of this seriel
18 the process of summation of the ori
series, Then the * approximation’ of the
summation of the original series to a ** limit *’
means the * approximation of the ferms of
this new series to a limit.”” And we have
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now to explain what we mean by the approxi-
mation to a limit of the terms of a series.
Now, remembering the definition (given in
chapter XII.) of a standard of approzima-
tion, the idea of a limit means this: [ is
the limit of the terms of the series s;, 9,
83, + + « 8py « » « I, corresponding to each
real number k, taken as a standard of
approxmmation, a term s, of the series ean
be found so that all succeeding terms (i.e.
Sn+1s Sni2s €te.) approximate to ! within
that standard of approximation. If another
smaller standard %! be chosen, the term
s, may be too early in the series, and a
later term s, with the above property will

then be found.
If this property holds, it is evident that as

you go along to series 81, 82, 83, « « «» 8y « «
from left to right, after a time you ecome to
terms all of which are nearer to / than any
number which you may like to assign. In
other words you approximate to ! as elosely
as you like. The close connection of this
definition of the limit of a series with the
definition of a continuous function given in
chapter XI. will be immediately perceived.
Then coming back to the original series u;,
W, US, . « «» Up, « « +; the limit of the terms of

the series 81, 82, 83, « « +s Sy + + = ised}d
the ‘“ sum to infinity ”” of the original series.
But it is evident that this use of the word
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“ cum ”’ is very artificial, and we must not
assume the analogous properties to those of
the ordinary sum of a finite number of terms
without some special investigation,

Let us look at an example of a * sum to
infinity.” Consider the recurring decimal
.1111. . . . This decimal is merely a way of
symbolizing the ‘‘sum to infinity ” of the series
.1, -01, 001, -0001, etec. The correspond-
ing series found by summation 1s 8§;=-1,
§o=-11, s3=-111, s4=-1111, etc. The limit
of the terms of this series is } ; this 1s easy to
see by simple division, for

1= 14 2="114k;="111+5g5m= elc.
Hence, if -2 is given (the k of the definition),
.1 and all succeeding terms differ from § by
less than & ; if (2 is given (another choice
for the k of the definition), -111 and all
succeeding terms differ from } by less than

+dsw3 and so on, whatever choice for &k be
made.

It is evident that nothing that has been
said gives the slightest idea as to how the
“sum to infinity” of a series is to be
found. We have merely stated the condi-
tions which such a number is to satisfy. In-
deed, a general method for finding in all
cases the sum to infinity of a series is intrinsic-
ally out of the question, for the simple reason
that such a *‘ sum,” as here defined, does not
always exist. Series which possess a sum to
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infinity are called convergent, and those which
do not possess a sum to infinity are called
diwvergent.

An obvious example of a divergent series
1, 2,8,...,n...1te the series of in-
tegers in their order of magnitude. For
whatever number ! you try to take as its
sum to infinity, and whatever standard of
approximation k& you choose, by taking
enough terms of the series you can always
make their sum differ from [ by more than
k. Again, another example of a divergent
series is 1, 1, 1, ete., i.e. the series of
which each term is equal to 1. Then the
sum of n terms is n, and this sum grows
without limit as n increases. Again, another
example of a divergent series is 1, —1, 1, —1,
1, —1, ete., i.e. the series in which the terms
are alternately 1 and —1. The sum of an
odd number of terms is 1, and of an even
number of terms is 0. Hence the terms of

the series sy, 82, 83, « « « 85 . . . do not ap-
proximate to a limit, although they do not

increase without limit.

It is tempting to suppose that the condi-
tion for w;, %2, . . . %n « . . to have a sum
to infinity is that u, should decrease inde-
finitely as n increases. Mathematics would
be a much easier science than it is, if this
were the case. Unfortunately the supposition

1s not true.
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For example the series
L% 1} 1

,21-8141---;”1---
is divergent. It is easy to see that this is
the case; for consider the sum of n terms
beginning at the (n41)* term. These n

terms are -—-1- - L —1—- + there

n+1’'n+2’n48" " " "W

- is the least among them.,

2n
Hence their sum is greater than n times

21—;;, i.e. is greater than % Now, without
altering the sum to infinity, if it exist, we ‘
can add together neighbouring terms, and
obtain the series

1,4 3+ ¢+ ++ 44, ete,,

that is, by what has been said above, a series

whose terms after the 2nd are greater than
those of the series,

1, §, &, &, ete,

where all the terms after the first are equal.

But this series is divergent. Hence the

original series is divergent.

This question of divergency shows how

careful we must be in arguing from the pro-
* Cf. Note C, p. 261,

are n of them and

L]
e

i ' 1 y
i S - . 3 L -"H
T R I i e e i L LR L
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perties of the sum of a finite number of terms
to that of the sum of an infinite series. For
the most elementary property of a finite
number of terms is that of course they
possess a sum : but even this fundamental
property is not necessarily possessed by an
infinite series. This caution merely states
that we must not be misled by the suggestion
of the technical term “sum of an infinite
series.”” It is usual to indicate the sum of

the infinite series
ul,u2,U3, 5 9 3 un- k-4 by

Ul TU2TUST o o o +Ug+ « & &

We now pass on to a generalization of the
idea of a series, which mathematiecs, true to
its method, makes by use of the variable.
Hitherto, we have only contemplated series
in which each definite term was a definite
number. But equally well we can generalize,
and make each term to be some mathematical
expression containing a variable 2. Thus
we may consider the series 1, 2, a2, 23, . . .,
a", . . ., and the series

x? @3 a"

w"'“""__—,illi_'lll

2 8 n

In order to symbolize the general idea of
any such function, conceive of a function of

2, fa(@) say, which involves in its formation
a variable integer n, then, by giving n the
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values 1, 2, 38, ete., in succession, we get the
series

fl(m)r f2($)s f3(¢23), s ) fn(m):

Such a series may be convergent for some
values of # and divergent for others. It is,
in fact, rather rare to find a series involving a
variable # which is convergent for all values
of #,—at least in any particular instance it is
very unsafe to assume that this i1s the case.
For example, let us examine the simplest of
all instances, namely, the ** geometrical ”’
series
I S e SR

The sum of n terms is given by
Sn=14a+a2+a3+4+ ... +a"
Now multiply both sides by # and we get
n=r+x24ad3+at4 ... 424"t

Now subtract the last llne from the upper
line and we get

$n(l —2) =8, —as, =1 —a"t1,
and hence (if # be not equal to 1)
1 —pn+1 1 a1
1= 1—8 149
Now if # be numerically less than 1, for suffi-

ciently large values of n, f n:

Spn=

is always numeri-

¥,

A

Py b4 '

SN , et < T

‘%M’H: N e o N s S il
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cally less than k, however k be chosen. Thus,
if # be numerically less than 1, the series 1, o,

&% ...a"% . . .18 convergent, and -1—-1—-—is its
—x

limit. This statement is symbolized by
1
-=1+4w+ta2+4... 42"+ ..., (=1 {z {1).

1—a

But if # is numerically greater than 1, or
numerically equal to 1, the series is divergent.
In other words, if z lie between —1 and +1,
the series is convergent; but if # be equal
to —1 or 41, or if o lie outside the interval
—1 to 41, then the series is divergent. Thus
the series is convergent at all * points”
within the interval —1 to -+1, exclusive of
the end points.

At this stage of our enquiry another ques-
tion arises. Suppose that the series

fil@)+fa(2)+f3(2)+ . « « +hal@)+ . . .

is convergent for all values of # lying within
the interval a to b, i.e. the series i1s convergent
for any value of @ which is greater than a and
less than b. Also, suppose we want to be
sure that in approximating to the limit we
add together enough terms to come within
some standard of approximation k. Can we
always state some number of terms, say n,
such that, if we take n or more terms to
form the sum, then whatever value @ has
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within the interval we have satisfied the
desired standard of approximation ?

Sometimes we can and sometimes we can-
not do this for each value of £&. When we
can, the series i1s called uniformly convergent
throughout the interval, and when we cannot
do so, the series is called non-uniformly con-
vergent throughout the interval. It makes
a great difference to the properties of a series
whether it is or is not uniformly convergent
through an interval. Let us illustrate the
matter by the simplest example and the
simplest numbers.

Consider the geometric series

l4+a4+a24a34 ... +24 . . «

It is convergent throughout the interval
—1 to +1, excluding the end values 2= 1.
But it is not uniformly convergent through-
out this interval. For if s,(z) be the sum of
n terms, we have proved that the difference

+1
between s,(2) and the limit i—}—:é 1S fn—:_—é'
Now suppose n be any given number of terms,
say 20, and let k be any assigned standard
of approximation, say -001. Then, by taking

2 near enough to 4 1 or near enough to — 1,

we can make the numerical value of iﬂfE to

be greater than -001. Thus 20 terms will
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not do over the whole interval, though it is
more than enough over some parts of it,
The same reasoning can be applied what-
ever other number we take instead of 20,
and whatever standard of approximation in-
stead of -001. Hence the geometric series
1424224234+ ... 424+ . .. is non-uni-
formly convergent over its whole interval of
convergence —1 to 41. But if we take any
smaller interval lying at both ends within the
interval —1 to -1, the geometric series is
uniformly convergent within it. For ex-
ample, take the interval 0 to 4. Then any
i1
1—a
less than k at these limits for # also serves

for all values of @ between these limits, since
+1

numerically

value for n which makes

it so happens that st diminishes in numeri-

cal value as # diminishes in numerical value.
For example, take k=-001; then, putting

pn+1
for n=1, el e
ek O .
for n=2, e T 00 )
mn+1
fOl' n==8 - . .

Thus three terms will do for the whole in-
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terval, though, of course, for some parts of
the interval it is more than 1s necessary.
Notice that, because 14a+4a2+4 ...
4an4 , ., . is convergent (though not uni-
formly) throughout the interval —1 to -1,
for each value of @ in the interval some num-
ber of terms n can be found which will satisfy
a desired standard of approximation; but,
as we take @ nearer and nearer to either end
value +1 or —1, larger and larger values of
n have to be employed.

It is curious that this important distinction
between uniform and non-uniform conver-
gence was not published till 1847 by Stokes—
afterwards, Sir George Stokes—and later, in-
dependently in 1850 by Seidel, a German
mathematician,

The critical points, where non-uniform con-
vergence comes in, are not necessarily at the
limits of the interval throughout which con-
vergence holds. This is a speciality belonging
to the geometric series.

In the case of the geometric series 1-4-a
+a2+ ... +2"+ . .. a simple algebraic

1
l—a
its interval of convergence. But this 1s not
always the case. Often we can prove a series
to be convergent within a certain interval,
though we know nothing more about its
limit except that it is the limit of the series.

expression can be given for its limit in
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But this 1s a very good way of defining a
function ; viz. as the limit of an infinite con-
vergent series, and is, in fact, the way in which
most functions are, or ought to be, defined.

Thus, the most important series in ele-
mentary analysis is

2 3
1+w+%+§7+ - +$+ ' o o

where n! has the meaning defined earlier in
this chapter. This series can be proved to
be absolutely convergent for all values of a,
and to be uniformly convergent within any
interval which we like to take. Hence it has
all the comfortable mathematical properties
which a series should have. It is called the
exponential series. Denote its sum to infinity

by expz. Thus, by definition,
SR EI G i v A
ey SUTEIT = TGPy

expa is called the exponential function.,
It is fairly easy to prove, with a little
knowledge of elementary mathematics, that

(expz) x (expy) =exp(z+y) . . .(4)
In other words that
(expz) x(expy) =
(2+y)? |, (2+y)?
(z +y)"
n !

4 « a0
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This property (4) is an example of what
is called an addition-theorem. When any
function [say f(z)] has been defined, the first
thing we do is to try to express f(2+y) in terms
of known functions of # only, and known func-
tions of ¥ only. If we can do so, the result
is called an addition-theorem. Addition-
theorems play a great part in mathematical
analysis. Thus the addition-theorem for the

sine is given by

sin (z+y)=sin @ cos y-cos & sin y,
and for the cosine by

cos (z-+y)=cos @ cos y—sin & sin Y.

As a matter of fact the best ways of de-
fining sin # and cos 2 are not by the elaborate
geometrical methods of the previous chapter,
but as the limits respectively of the series

g3 b gt
w—3—1+g~1—7—!+etc .
x> a* b
and 1_2_i+m—g‘l+et01 g N 9
so that we put
g S S e S
SIN &= 31 g—!—--ﬂ+etc. .. 8
2 6
COS a!=1—--i?—- w—4—£+‘etc- . s oy

2! " 41 6!
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These definitions are equivalent to the geo-
metrical definitions, and both series can be
proved to be convergent for all values of a,
and uniformly convergent throughout any
interval. These series for sine and cosine
have a general likeness to the exponential
series given above. They are, indeed, intim-
ately connected with it by means of the

theory of imaginary numbers explained in
" Chapters VI1I. and VIIL

/

X’ 0 ' I
Fig. 29.

- The oraph of the exponential function is
~ given iE ﬁg. 29. It cuts the axis OY at_the
point y =1, as evidently it ought to do, since |
when 2=0 every term of the series except
the first is zero. The importance of the ex-
ponential functio; 1S that!i;t it reggseesegi;st ear:));
changing physical quantity W05

increise:g af Zny instant 1s a }mﬂorm p;r-
centage of its value at that instant. Xor

:E
!
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example, the above graph represents the size
at any time of a population with a uniform
birth-rate, a uniform death-rate, and no emi-
gration, where the @ corresponds to the time
reckoned from any convenient day, and the
y represents the population to the proper
scale. The scale must be such that OA4 re-
presents the population at the date which is
taken as the origin. But we have here come
upon the i1dea of *‘ rates of increase > which
1s the topic for the next chapter.

An mmportant function nearly allied to the
exponential function is found by putting —a32
for # as the argument in the exponential func-
tion. We thus get exp. (—a2). The graph
y=exp. (—a2) is given in fig. 80.

Y

Fig. 30.

The curve, which is something like a cocked
hat, is called the curve of normal error. Its
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corresponding function is vitally important
to the theory of statistics, and tells us in
many cases the sort of deviations from the
average results which we are to expect.

Another important function is found by
combining the exponential function with the
sine, in this way :

=exp(—cx) xsin i

p

Its graph is given in fig. 81. The points
4, B, 0, C, D, E, F, are placed at equal In-
tervals 3p, and an unending series of them
should be drawn forwards and backwards.
This function represents the dying away of
vibrations under the influence of friction or of
“ damping *’ forces. Apart from the friction,
the vibrations would be periodic, with a
period p; but the influence of the friction
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i L e T e e Rl . o . e

makes the extent of each vibration smaller
than that of the preceding by a constant per-
c;ntl:.ged of that extent. This combination
of the idea of ** periodicity ”’ (which requires
the sine or cosine for its symbolism) and of
" eonstant percentage ” (which requires the
exponential function for its symbolism) is the
reason for the form of this function, v,
its form as a product of a
an exponential function.
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CHAPTER XV
THE DIFFERENTIAL CALCULUS

THE invention of the differential ealeulus
marks a crisis in the history of mathematies.
The progress of science is divided between
periods characterized by a slow accumulation
of ideas and periods, when, owing to the new
material for thought thus patiently collected,
some genius by the invention of a new method
or a new point of view, suddenly transforms
the whole subject on to a higher level. These
contrasted periods in the progress of the
history of thought are compared by Shelley
to the formation of an avalanche.

The sun-awakened avalanche ! whose mass,

Thrice sifted by the storm, had gathered there

Flake after flake,—in heaven-defying minds

As thought by thought is piled, till some greab truth
Is loosened, and the nations echo round,

The comparison will bear some pressing.
The final burst of sunshine which awakens

the avalanche is not necessarily beyond com-
parison in magnitude with the other powers
of nature which have presided over its slow

217
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formation. The same is true in science. The
genius who has the good fortune to produce
the final idea which transforms a whole
region of thought, does not necessarily excel
all his predecessors who have worked at the
preliminary formation of ideas. In consider-
ing the history of science, it is both silly and
ungrateful to confine our admiration with a
gaping wonder to those men who have made
the final advances towards a new epoch

In the particular instance before us, the
subject had a long history before it as-
sumed its final form at the hands of its
two inventors. There are some traces of its
methods even among the Greek mathe-
maticians, and finally, just before the actual
production of the subject, Fermat (born 1601
A.p., and died 1665 A.p.), a distinguished
French mathematician, had so improved on
previous ideas that the subject was all but
created by him. Fermat, also, may lay
claim to be the joint inventor of coordinate
geometry in company with his contemporary
and countryman, Descartes. It was, in fact,
Descartes from whom the world of science
received the new ideas, but Fermat had cer-
tainly arrived at them independently.

We need not, however, stint our admira-
tion either for Newton or for Leibniz. New-
ton was a mathematician and a student of
physical science, Leibniz was a mathema-
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tictan and a philosopher, and each of them
in his own department of thought was one of
the greatest men of genius that the world
has known. The joint invention was the
occasion of an unfortunate and not very
creditable dispute. Newton was using the
methods of Fluxions, as he called the subject,
in 1666, and employed it in the composition
of his Principia, although in the work as
printed any special algebraic notation is
avoided. But he did not print a direct state-
ment of his method till 1698. Leibniz pub-
lished his first statement in 1684. He was
accused by Newton’s friends of having got
it from a MS. by Newton, which he had been
shown privately. Leibniz also accused New-
ton of having plagiarized from him. There
is now not very much doubt but that both
should have the credit of being independent
discoverers. The subject had arrived at a
stage in which it was ripe for discovery, and
there is nothing surprising in the fact that
two such able men should have independ-
ently hit upon it.

These joint discoveries are quite common
in science. Discoveries are not in general
made before they have been led up to
by the previous trend of thought, and by
that time many minds are in hot pursuit
of the important idea. If we merely keep

to discoveries in which Englishmen are
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concerned, the simultaneous enunciation of
the law of natural selection by Darwin and
Wallace, and the simultaneous discovery of
Neptune by Adams and the French astrono-
mer, Leverrier, at once occur to the mind.
The disputes, as to whom the credit ought to
be given, are often influenced by an unworthy
spirit of nationalism. The really inspiring
reflection suggested by the history of mathe-
matics is the unity of thought and interest
among men of so manyepochs,somany nations,
and so many races. Indians, Egyptians,
Assyrians, Greeks, Arabs, Italians, French-
men, Germans, Englishmen,and Russians, have
all made essential contributions to the pro-
gress of the science. Assuredly the jealous
exaltation of the contribution of one particu-
lar nation is not to show the larger spirit.

The importance of the differential calculus
arises from the very nature of the subject,
which is the systematic consideration of the
rates of increase of functions. This idea is
immediately presented to us by the study of
nature ; velocity is the rate of increase of the
distance travelled, and aeceleration is the
rate of increase of velocity. Thus the funda-
mental idea of change, which is at the basis of
our whole perception of phenomena, immedi-
ately suggests the enquiry as to the rate of
change. The familiar terms of * quiekly *
and “‘slowly” gain their meaning from a tacit
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reference to rates of change. Thus the differ-
ential calculus_ 18 concerned with the very
key of the position from which mathematics

can be successfully applied to the explanation
of the course of nature.

~ This idea of the rate of change was certainly
in Newton’s mind, and was embodied in the

Fig. 32.

language in which he explained the subject.

It may be doubted, however, whether this
point of view,derived from natural phenomena,
was ever much in the minds of the preced-
ing mathematicians who prepared the subject
for its birth. They were concerned with the

- more abstract problems of drawing tangents

; to curves, of finding the lengths of curves, and
of finding the areas enclosed by curves. The
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last two problems, of the rectification of curves
and the quadrature of curves as they are
named, belong to the Integral Calculus, which
is however involved in the same general subject
as the Differential Calculus.

The introduction of coordinate geometry
makes the two points of view coalesce. FKor
(cf. fig. 82) let AQP be any curved line and let
PT be the tangent at the point P on it. Let
the axes of coordinates be OX and OY ; and
let y=/(2) be the equation to the curve, so that
OM =2, and PM=y. Now let @ be any
moving point on the curve, with coordinates
&1, ¥1,; then y; =f(2;). And let @ be the point
on the tangent with the same abscissa @ ;
suppose that the coordinates of Q" are @; and
y’. Now suppose that N moves along the
axis OX from left to right with a uniform
velocity ; then it is easy to see that the ordi-
nate ¢’ of the point Q" on the tangent T'P also
increases uniformly as Q" moves along the
tangent in a corresponding way. Infactit is
easy to see that the ratio of the rate of increase
of QN to the rate of increase of ON is in the
ratio of @ N to T'N, which is the same at all
points of the straight line. But the rate of
increase of QN, which is the rate of increase
of f(@,), varies from point to point of the curve
so long as it is not straight. As @ passes
through the point P, the rate of increase of
f (1) (where z; coincides with  for the moment)
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1s the same as the rate of increase of y* on the
tangent at P. Hence, if we have a general
method of determining the rate of increase
of a function f(#) of a variable #, we can
determine the slope of the tangent at any
pont (2, y,) on a curve, and thence can
draw 1t. Thus the problems of drawing tan-
gents to a curve, and of determining the
rates of increase of a function are really
identical.

It will be noticed that, as in the cases of
Conic Sections and Trigonometry, the more
artificial of the two points of view is the one
in which the subject took its rise. The really
fundamental aspect of the science only rose
into prominence comparatively late in the
day. It is a well-founded historical genera-
lization, that the last thing to be discovered
in any science is what the science is really
about. Men go on groping for centuries,
guided merely by a dim instinct and a puzzled
curiosity, till at last ‘‘some great truth is
loosened.”

Let us take some special cases in order to
familiarize ourselves with the sort of ideas
which we want to make precise. A train is
in motion—how shall we determine its velocity
at some instant, let us say, at noon ? We can
take an interval of five minutes which includes

noon, and measure how far the train has gone
in that period. Suppose we find it to be five
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miles, we may then conclude that the train
was running at the rate of 60 miles per hour,
But five miles is a long distance, and we
cannot be sure that just at noon the train
was moving at this pace. At noon it may
have been running 70 miles per hour, and
afterwards the break may have been put on.
It will be safer to work with a smaller interval,
say one minute, which includes noon, and to
measure the space traversed during that
period. But for some purposes greater
accuracy may be required, and one minute
may be too long. In practice, the necessary
inaccuracy of our measurements makes it
useless to take too small a period for measure-
ment. But in theory the smaller the period
the better, and we are tempted to say that
for ideal accuracy an infinitely small period
1s required. The older mathematicians, in
particular Leibniz, were not only tempted,
but yielded to the temptation, and did say
it. Even now it is a useful fashion of speech,
provided that we know how to interpret it
into the language of common sense. It is
curious that, in his exposition of the founda-
tions of the calculus, Newton, the natural
scientist, is much more p ical than
Leibniz, the philosopher, and on the other
hand, Leibniz provided the admirable nota-

tion which has been so essential for the m'o-
gress of the subject.
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Now take another example within the region
ol pure mathematics, Let us proceed to find
the rate of increase of the function 22 for
any value @ of its argument. We have not
yet really defined what we mean by rate of
increase. We will try and grasp its meaning
in relation to this particular case. When g
Increases to @ +h, the function 22 increases to
(2+h)?; so that the total increase has been
(z+h)2—a2, due to an increase % in the argu-
ment. Hence throughout the interval z to
(#+h) the average increase of the function per

unit increase of the argument is (m+}l:) o mz.

But

(2 +h)2=a2+2hz + 13,

and therefore

Thus 224k is the average increase of the
function @2 per unit increase in the argument,
the average being taken over by the interval
@ to &+h. But 2z+h depends on k, the size
of the interval. We shall evidently get what

we want, namely the rafe of increase at th;

value # of the argument, by diminishing
more and more. Hence in the limit when A

H
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has decreased indefinitely, we say that 2z 1s the
rate of increase of @2 at the value @ of the
argument.

Here again we are apparently driven up
against the idea of infinitely small quantities
in the use of the words ‘‘ in the limit when A
has decreased indefinitely.”” Leibniz held that,
mysterious as it may sound, there were actu-
ally existing such things as infinitely small
quantities, and of course infinitely small num-
bers corresponding to them. Newton’s lan-
guage and ideas were more on the modern
lines ; but he did not succeed in explaining
the matter with such explicitness so as to be
evidently doing more than explain Leibniz’s
ideas in rather indirect language. The real
explanation of the subject was first given by
Weierstrass and the Berlin School of mathe-
maticians about the middle of the nineteenth
century. But between Leibniz and Weier-
strass a copious literature, both mathematical
and philosophical, had grown up round these
mysterious infinitely small quantities which
mathematics had discovered and philosophy
proceeded to explain. Some philosophers,
Bishop Berkeley, for instance, correctly denied
the validity of the whole idea, though for
reasons other than those indicated here. But
the curious fact remained that, despite all
criticisms of the foundations of the subject,
there could be no doubt but that the mathe-
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matical procedure was substantially right, In
fact, the subject was right, though the explana-
tions were wrong. It is this possibility of
being right, albeit with entirely wrong ex-
planations as to what is being done, that so
often makes external criticism—that is so far
as it is meant to stop the pursuit of a method—
singularly barren and futile in the progress of
science. The instinct of trained observers,
and their sense of curiosity, due to the fact
that they are obviously getting at something,
are far safer guides. Anyhow the general
effect of the success of the Differential Caleulus
was to generate a large amount of bad philo-
sophy, centring round the idea of the in-
finitely small. The relics of this verbiage
may still be found in the explanations of
many elementary mathematical text-books on
the Differential Calculus. It is a safe rule to
apply that, when a mathematical or philoso-
phical author writes with a misty profundity,

he is talking nonsense.

Newton would have phrased the question
by saying that, as h approaches zero, in the
limit 22 +h becomes 2z. It is our task so to
explain this statement as to show that it does
not in reality covertly assume the existence
of Leibniz’s infinitely small quantities. In
reading over the Newtonian method of state-
ment, it is tempting to seek simplicity by
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saying that 2x4-hA is 22, when A is zero. But
this will not do; for it thereby abolishes the
interval from @ to # 44, over which the average
increase was calculated. The problem 1s, how
to keep an interval of length A over which to
calculate the average increase, and at the same
time to treat h as if it were zero. Newton did
this by the conception of a limit, and we now
proceed to give Weierstrass’s explanation of
its real meaning.

In the first place notice that, in discussing
22 +h, we have been considering x as fixed In
value and 2 as varying. In other words «
has been treated as a ‘‘ constant ’® wvariable,
or parameter, as explained in Chapter 1IX. ;
and we have really been considering 2z +h as
a function of the argument A. Hence we can
generalize the question on hand, and ask
what we mean by saying that the function
f(h) tends to the limit [, say, as its argument
h tends to the value zero. But again we shall
see that the special value zero for the argument
does not belong to the essence of the subject;
and again we generalize still further, and ask,
what we mean by saying that the function f(A)
tends to the limit / as A tends to the value a.

Now, according to the Weierstrassian ex-
planation the whole idea of 2 tending to the
value a, though it gives a sort of metaphorical
picture of what we are driving at, is really off
the point entirely. Indeed it is fairly obvious
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that, as long as we retain anything like " A
tending to a,” as a fundamental idea, we are
really in the clutches of the infinitely small ;
for we imply the notion of A being infinitely
near to a. This is just what we want to get
rid of.

Accordingly, we shall yet again restate our
phrase to be explained, and ask what we
mean by saying that the limit of the funetion
f(h) at a is L.

The limit of 7(h) at a is a property of the
neighbourhood of a, where ™ neighbourhood ™
is used in the sense defined in Chapter XI.
during the discussion of the continuity of
functions. The value of the function f(h) at
a is f(a); but the limit is distinct in idea
from the value, and may be different from
it, and may exist when the value has not
been defined. We shall also use the term
“ standard of approximation” in the sense
:n which it is defined in Chapter XI. iIn
fact, in the definition of * continuity *’ given
towards the end of that chapter we have
practically defined a limit. The definition of
a Jimit is :—

A function f(x) has the limit { at a value
a of its argument 2, when in the neighbour-
hood of a its values approximate

ard of approximation.
his definition with that already
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A function f(a) i1s continuous at a value a
of its argument, when in the neighbourhood
of a its values approximate to its value at a
within every standard of approximation.

It is at once evident that a function is con-
tinuous at @ when (i) it possesses a limit at a,
and (ii) that limit is equal to its value at a.
Thus the illustrations of continuity which
have been given at the end of Chapter XI. are
illustrations of the idea of a limit, namely,
they were all directed to proving that f(a)
was the limit of f(a) at a for the functions
considered and the value of a considered. It
1s really more instructive to consider the
limit at a point where a function is not con-
tinuous. For example, consider the function
of which the graph is given in fig. 20 of Chap-
ter XI. This function f(2) is defined to have
the value 1 for all values of the argument
except the integers 0, 1, 2, 8, ete., and for these
integral values it has the value 0. Now let
us think of its limit when #=8. We notice
that in the definition of the limit the value
of the function at a (in this case, a=38) is ex-
cluded. But, excluding f(8), the values of
f(), when @ lies within any interval which
(1) contains 8 not as an end-point, and (:3
does not extend so far as 2 and 4, are
equal to 1; and hence these values approxi-

mate to 1 within every standard of approxi-
mation. Hence 1 is the limit of f(x) at the




DIFFERENTIAE CALCULUS 281

value 8 of the argument @, but by definition
/(8) =0,

This 18 an instance of a function which
possesses both a value and a limit at the
value 8 of the argument, but the value is not
equal to the limit. At the end of Chapter
XI. the function 2? was considered at the
value 2 of the argument. Its value at 2 is 22,
i.e. 4, and it was proved that its limit is also
4. Thus here we have a function with a
value and a limit which are equal.

Finally we come to the case which 1s essen-
tially important for our purposes, namely, to
a function which possesses a limit, but no

defined value at a certain value of its argu-
ment. We need not go far to look for

: 20 .
such a function, = will serve our purpose.

Now in any mathematical book, we might

find the equation, Ei".-_-.:z. written without

&

hesitation or comment. But there is a difli-

culty in this ; for when @ is zero, -?n g; and

g has no defined meaning. Thus the value

of the function %‘i’ at 2=0 has no defined
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meaning. But for every other value of z,

the value of the function -25 is 2. Thus the

limit of - at =0 is 2, and it has no value

&

2
at 2=0. Similarly the limit ol % at a=a 1s

a whatever a may be, so that the limit of

a2 > a2
= at #=0 is 0. But the value of = at =0

takes the form g, which has no defined

2

meaning. Thus the function % has a limit

but no value at 0.

We now come back to the problem from
which we started this discussion on the nature
of a limit. How are we going to define the
rate of increase of the function 22 at any
value x of its argument. Our answer is that
this rate of increase is the limit of the func-

(z+h)2—a2

hon - B at the wvalue zero for its

argument h. (Note that  is here a * con-
stant.””) Let us see how this answer works
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in the light of our definition of a limit. We
have

(#+h)2—a?_ 2hx+h?_h(2z+h)

h h h

Now in finding the limit of """ at the

value 0 of the argument A, the value (if any)
of the function at A=0 is excluded. But for

all values of h, except h=0, we can divide

22 4-h)
) at

h=0 is the same as that of 2z+h at A=0.
Now, whatever standard of approximation &
we choose to take, by considering the interval
from —#k to 44k we see that, for values of
h which fall within it, 22 +A differs from 22
by less than }k, that is by less than k. This
is true for any standard k. Hencein the neigh-
bourhood of the value 0 for &, 2z -+Ah approxi-

mates to 2z within every standard of approxi-
mation, and therefore 2z is the limit of 2z +A

at h—0. Hence by what has been said above

B e |
22 is the limit of (m+h2 e at the value 0

through by h. Thus the limit of %

for h. It follows, therefore, that 2z is what
we have called the rate of increase of 22 at
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crease for a2 as did the Leibnizian way of
making h grow ‘ infinitely small.”

The more abstract terms *‘ differential co-
efficient,” or ‘‘ derived function,” are gener-
ally used for what we have hitherto called the
‘“rate of increase’” of a function. The
general definition is as follows: the differ-
ential coefficient of the function f(z) is the

[(z+h)—f(@)
h

of the argument h at the value 0 of its argu-
ment.

How have we, by this definition and the
subsidiary definition of a limit, really managed
to avoid the notion of ** infinitely small num-
bers”” which so worried our mathematical
forefathers ? For them the difficulty arose
because on the one hand they had to use an
interval # to #+h over which to calculate
the average increase, and, on the other hand,
they finally wanted to put A=0. The result
was they seemed to be landed into the notion
of an existent interval of zero size. Now
how do we avoid this difficulty ? In this
way—we use the notion that corresponding
to any standard of approximation, some in-
terval with such and such properties can be
found. The difference is that we have
grasped the importance of the notion of * the
variable,” and they had not done so. Thus,

limit, if it exist, of the function
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at the end of our exposition of the essential
notions of mathematical analysis, we are led
back to the ideas with which in Chapter II.
we commenced our enquiry—that in mathe-
matics the fundamentally important ideas
are those of *‘some things’” and * any
things.”



CHAPTER XVI
GEOMETRY

GroMETRY, like the rest of mathematics, is
abstract. In it the properties of the shapes
and relative positions of things are studied.
But we do not need to consider who is observ-
ing the things, or whether he becomes ac-
quainted with them by sight or touch or
hearing. In short, we ignore all particular
sensations, Furthermore, particular things
such as the Houses of Parliament, or the
terrestrial globe are ignored. Kvery pro-
position refers to any things with such and
such geometrical properties, Of course it
helps our imagination to look at particular
examples of spheres and cones and triangles
and squares. But the propositions do not
merely apply to the actual figures printed in
the book, but to any such figures.

Thus geometry, like algebra, is dominated
by the ideas of *“ any ”’ and * some ’’ things.
Also, in the same way it studies the inter-
relations of sets of things. Fore e, con-

sider any two triangles 4BC and DEF.
236
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What relations must exist between some of
the parts of these triangles, in order that the
triangles may be in all respects equal ? This
1s one of the first investigations undertaken
in all elementary geometries. It is a study

A lo
8 c E r;

Fig. 33.

of a certain set of possible correlations be-
tween the two triangles. The answer is that
the triangles are in all respects equal, if :—
Either, (a) Two sides of the one and the in-
cluded angle are respectively equal to two
sides of the other and the included angle :

Or, (b) Two angles of the one and the side
joining them are respectively equal to two
angles of the other and the side joining them :

Or, (¢) Three sides of the one are respect-
tively equal to three sides of the other.

This answer at once suggests a further en-
quiry. What is the nature of the correlation
between the triangles, when the three
of the one are respectively equal to the three
angles of the other ? This further investiga-
tion leads us on to the whole theory of simi-
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larity (cf. Chapter XIIL.), which is another
type of correlation.

Again, to take another example, consider
the internal structure of the triangle 4BC.
Its sides and angles are inter-related—the
greater angle 1s opposite to the greater side,
and the base angles of an isosceles triangle

are equal. If we proceed to trigonometry
this correlation receives a more exact deter-
mination in the familiar shape

sin 4 sin B sin C
a b 5

a2 = b2+ ¢2 — 2bccosd, with two similar
formulee.

Also there is the still simpler correlation
between the angles of the triangle, namely,
that their sum is equal to two right angles ;
and between the three sides, namely, that the

sum of the lengths of any two is greater than
the length of the third

Thus the true method to study geometry is
to think of interesting simple figures, such as
the triangle, the parallelogram, and the circle,
and to investigate the correlations between
their various parts. The geometer has in his

mind not a detached proposition, but a figure

with its various parts mutually inter-depend-
ent. Just as in algebra, he '

triangle into the polygon,

the dds inbs
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the conic section. Or, pursuing a converse
route, he classifies triangles according as they
are equilateral, isosceles, or scalene, and
polygons according to their number of sides,
and conic sections according as they are hy-
perbolas, ellipses, or parabolas.

The preceding examples illustrate how the
fundamental ideas of geometry are exactly
the same as those of algebra; except that
algebra deals with numbers and geometry
with lines, angles, areas, and other geo-
metrical entities. This fundamental identity
is one of the reasons why so many geometrical
truths can be put into an algebraic dress.
Thusif 4, B, and C are the numbers of degrees
respectively in the angles of the triangle ABC,
the correlation between the angles 1s repre-
sented by the equation

A+B+C=180°;

and if a, b, c are the number of feet respectively
in the three sides, the correlation between the
sides is represented by a {b+e¢, b {c+a,
¢ {(a+b. Also the trigonometrical formule
quoted above are other examples of the same
fact. Thus the notion of the variable and

the correlation of variables is just as essential
in geometry as it is in algebra.

But the parallelism between geometry and
algebra can be pushed still further, owing to
the fact that lengths, areas, volumes, and
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angles are all measurable ; so that, for exam-
ple, the size of any length can be determined
by the number (not necessarily integral) of
times which it contains some arbitrarily known
unit, and similarly for areas, volumes, and
angles. The trigonometrical formulee, given
above, are examples of this fact. But it re-
ceives its erowning application in analytical
geometry. This great subject is often mis-
named as Analytical Conic Sections, thereby
fixing attention on merely one of its sub-
divisions., It is as though the great science
of Anthropology were named the Study of
Noses, owing to the fact that noses are a
prominent part of the human body.

Though the mathematical procedures in
geometry and algebra are in essence identical
and intertwined in their development, there
1s necessarily a fundamental distinction be-
tween the properties of space and the proper-
ties of number—in fact all the essential differ-
ence between space and number. The ** spaci-
ness ' of space and the *‘ numerosity’’ of
number are essentially different things, and
must be directly apprehended. None of the
applications of algebra to geometry or of
geometry to algebra go any step on the road
to obliterate this vital distinetion.

One very marked difference between space
and number is that the former seems to be so

much less abstract and fundamental than the
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latter. The number of the archangels can be
counted jus; because they are things. When
we once know that their names are Raphael,
(abriel, and Michael, and that these distinct
names represent distinct beings, we know with-
out further qiestion that there are three of
them. All the subtleties in the world about
the nature of angelic existences cannot alter
this fact, grantmg the premisses.

But we are stil quite inthe dark as to their
relation to space Do they exist in space at
all ? Perhaps it ‘s equally nonsense to say
that they are here or there, or anywhere, or
everywhere. Theirexistence may simply have
no relation to localities in space. Aeccording-
ly, while numbers must apply to all things,
space need not do so.

The perception of the locality of things
would appear to accompany, or be involved
in many, or all, of our sensations. It is in-
dependent of any particular sensation in the
sense that it accompanies many sensations.
But it is a special peculiarity of the things
which we apprehend by our sensations. The
direct apprehension of what we mean by the
positions of things in respect to each other
is a thing sui generis, just as are the appre-
hensions of sounds, colours, tastes, and smells.
At first sight therefore it would appear that
mathematics, in so far as it includes geometry
in its scope, is not abstract in the sense in
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which abstractness is ascribec to it in
Chapter 1.

This, however,is a mistake; tle truth being
that the *' spaciness " of space coes not enter
into our geometrical reasoniny at all, It
enters 1nto the geometrical intuitions of
mathematicians in ways persoral and peculiar
to each individual, But wha) enter into the
reasoning are merely certain properties of
things in space, or of things forming space,
which properties are completely abstract in
the sense in which abstreet was defined in
Chapter I.; these properties do not involve
any peculiar space-apprehension or space-
intuition or space-sensstion. They are on
exactly the same basis as the mathematical
properties of number, Thus the space-intui-
tion which is so essential an aid to the study
of geometry is logically irrelevant: it does
not enter into the premisses when they are
properly stated, nor into any step of the rea-
soning. It has the practical importance of an
example, which is essential for the stimulation
of our thoughts. Examples are equally neces-
sary to stimulate our thoughts on number,
When we think of *“two” and * three” we
see strokes in a row, or balls in a heap, or
some other physical aggregation of particular
things. The peculiarity of geometry is the
fixity and overwhelming of the

im
one particular example wm to our

iy
R,
WH—-*“IH!!-‘- &



GEOMETRY 248

minds. The abstract logical form of the
propositions when fully stated is, *‘ If any
collections of things have such and such
abstract properties, they also have such and
such other abstract properties.” But what
appears before the mind’s eye is a collection
of points, lines, surfaces, and volumes in the
space : this example inevitably appears, and
1s the sole example which lends to the propo-
sition its interest, However, for all its over-
whelming importance, it is but an example.

Geometry,viewed as a mathematical science,
is a division of the more general science of
order, It may be called the science of dimen-
sional order ; the qualification ** dimensional
has been introduced because the limitations,
which reduce it to only a part of the general
science of order, are such as to produce the
regular relations of straight lines to planes,
and of planes to the whole of space.

It is easy to understand the practical im-
portance of space in the formation of the
scientific conception of an external physical

world. On the one hand our space-percep-
tions are intertwined in our various sensations

and connect them together., We normally

judge that we touch an object in the same
place as we see it; and even in abnormal

cases we touch it in the same space as we see
it, and this is the real fundamental fact which

ties together our various sensations, Accord-
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ingly, the space perceptions are ‘n a sense the
common part of our sensatioas. Again it
happens that the abstract properties of space
form a large part of whatever is of spatial
interest. It is not too much to say that to
every property of space there corresponds an
abstract mathematical statement. To take
the most unfavourable instance, a curve may
have a special beauty of skape: but to this
shape there will correspond some abstract
mathematical properties which go with this
shape and no others.

Thus to sum up : (1) the properties of space
which are investigated in geometry, like those
of number, are properties belonging to things
as things, and without special reference to
any particular mode of apprehension: (2)
Space-perception accompanies our sensations,
perhaps all of them, certainly many; but it
does not seem to be a necessary quality of
things that they should all exist in one space
or in any space.




CHAPTER XVII
QUANTITY

IN the previous chapter we pointed out
that lengths are measurable in terms of some
unit length, areas in term of a unit area, and
volumes in terms of a unit volume.

When we have a set of things such as
lengths which are measurable in terms of any
one of them, we say that they are quantities
of the same kind. Thus lengths are quantities
of the same kind, so are areas, and so are
volumes. But an area is not a quantity of
the same kind as a length, nor is it of the
same kind as a volume. Let us think a little
more on what is meant by being measurable,
taking lengths as an example. :

Lengths are measured by the foot-rule. By
transporting the foot-rule from place to place
we judge of the equality of lengths. Again,
three adjacent lengths, each of one foot, form
one whole length of three feet. Thus to
measure lengths we have to determine the
equality of lengths and the addition of lengths.
When some test has been applied, such as the
transporting of a foot-rule, we say that the
lengths are equal; and when some process

2456
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has been applied, so as to secure lengths being
contiguous and not overlapping, we say that
the lengths have been added to form one
whole length. But we cannot arbitrarily take
any test as the test of equality and any
process as the process of addition. The re-
sults of operations of addition and of judg-
ments of equality must be in accordance with
certain preconceived conditions. For exam-
ple, the addition of two greater lengths must
yield a length greater than that yielded by
the addition of two smaller lengths. These
preconceived conditions when accurately for-
mulated may be called axioms of quantity.
The only question as to their truth or falsehood
which can arise is whether, when the axioms
are satisfied, we necessarily get what ordinary
people call quantities. If we do not, then
the name ‘‘ axioms of quantity ?? is ill-judged
—that is all.

These axioms of quantity are entirely ab-
stract, just as are the mathematical properties
of space. They are the same for all quantities,
and they presuppose no special mode of per-
ception. The ideas associated with the notion
of quantity are the means by which a con-
tinuum like a line, an area, or a volume can
be split up into definite parts. Then these
parts are counted ; so that numbers can be

used to determine the exact properties of a
continuous whole.
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Our perception of the flow of time and of
the succession of events is a chief example
of the application of these ideas of quantity.
We measure time (as has been said in con-
sidering periodicity) by the repetition of
similar events—the burning of successive
inches of a uniform candle, the rotation of
the earth relatively to the fixed stars, the
rotation of the hands of a clock are all ex-
amples of such repetitions. Events of these
types take the place of the foot-rule in rela-
tion to lengths. It is not necessary to assume
that events of any one of these types are
exactly equal in duration at each recurrence.
What is necessary is that a rule should be
known which will enable us to express the
relative durations of, say, two examples of
some type. For example, we may if we like
suppose that the rate of the earth’s rotation
is decreasing, so that each day is longer than
the preceding by some minute fraction of a
second. Such a rule enables us to compare
the length of any day with that of any other
day. But what is essential is that one series
of repetitions, such as successive days, should
be taken as the standard series ; and, if the
various events of that series are not taken as
of equal duration, that a rule should be

stated which regulates the duration to be
assigned to each day in terms of the duration

of any other day.
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What then are the requisites which such
a rule ought to have ? In the first place it
should lead to the assignment of nearly equal
durations to events which common sense
Judges to possess equal durations. A rule
which made days of violently different lengths,
and which made the speeds of apparently
similar operations vary utterly out of pro-
portion to the apparent minuteness of their
differences, would never do. Hence the first
requisite is general agreement with common
sense. But this is not sufficient absolutely
to determine the rule, for common sense is a
rough observer and very easily satisfied. The
next requisite is that minute adjustments of
the rule should be so made as to allow of the
simplest possible statements of the laws of
nature. For example, astronomers tell us
that the earth’s rotation is slowing down, so
that each day gains in length by some incon-
ceivably minute fraction of a second. Their
only reason for their assertion (as stated more
fully in the discussion of periodicity) is that
without it they would have to abandon the
Newtonian laws of motion. In order to keep
the laws of motion simple, they alter the
measure of time. This is a perfectly legiti-
mate procedure so long as it is thoroughly
understood.

What has been said above about the ab-
stract nature of the mathematical properties
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of space applies with appropriate verbal
changes to the mathematical properties of
time. A sense of the flux of time accompanies
all our sensations and perceptions, and prac-
tically all that interests us in regard to time
can be paralleled by the abstract mathe-
matical properties which we ascribe to it.
Conversely what has been said about the two
requisites for the rule by which we determine
the length of the day, also applies to the rule
for determining the length of a yard measure—
namely, the yard measure appears to retain
the same length as it moves about. Accord-
ingly, any rule must bring out that, apart
from minute changes, it does remain of in-
variable length. Again, the second requisite
1s this, a definite rule for minute changes
shall be stated which allows of the simplest
expression of the laws of nature. For ex-
ample, 1n accordance with the second re-
quisite the yard measures are supposed to
expand and contract with changes of tem-
perature according to the substances which
they are made of.

Apart from the facts that our sensations
are accompanied with perceptions of locality
and of duration, and that lines, areas, volumes,
and durations, are each in their way quanti-
ties, the theory of numbers would be of very
subordinate use in the exploration of the laws
of the Universe. As it is, physical science
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reposes on the main ideas of number, quan-

tity, space, and time. The mathematical
sciences associated with them do not form

the whole of mathematics, but they are the

substratum of mathematical physics as at
present existing.

NOTES

A (p. 60).—In reading these equations it must be noted
that a bracket is used in mathematical symbolism to
mean that the operations within it are to be performed
first. Thus (1+4+3)+2 directs us first to add 3 to 1, and
then to add 2 to the result; and 14(3+42) directs us
first to add 2 to 3, and then to add the result to 1. Again
a numerical example of equation (5) is

2x(3+4)=(2x3)+(2x 4).
We perform first the operations in brackets and obtain
2xT7T=6+8
which is obviously true.

B (p. 136).—This fundamental ratio %P is called the

eccentricity of the curve. l::cﬂo of the curve, as
distinct from its scale or size, depends upon the vnlno of

its eccentricity. Thus 1tmwro to think of ellipses
mgenumloro{hyparbohamgewsluhsvhgmeithu
case one definite shape. Ellipses with different
tricities have different shapes, and their sizes
upon the lengths of their major Andhplom
Mmhmtyuvurymlyameb,mdm !
o!mtniiifunl y slightly less unity is a
flat oval. parabolas have the same eccentricity
are therefore of the same shape, they can
drawn to different scales,

)
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C (p. 204).—If a series with all its terms positive is
convergent, the modified series found by making some
terms positive and some negative according to any
definite rule is also convergent. Each one of the set of
series thus found, including the original series, is called
"“ absolutely convergent.” But it is possible for a series
with terms partly positive and partly negative to be
convergent, although the corresponding series with all
its terms positive is divergent. For example, the series

1—§+3—1+ ete.
is convergent though we have just proved that

14+3+3+1+ ete.

is divergent. Buch convergent series, which are not
absolutely convergent, are much more difficult to deal
with than absolutely convergent series.

BIBLIOGRAPHY
NOTE ON THE STUDY OF MATHEMATICS

TaE difficulty that beginners find in the study of this
science is due to the large amount of technical detail which
has been allowed to accumulate in the elementary text-
books, obscuring the important ideas. o

The first subjects of study, apart from a knowledge of
arithmetic which is presupposed, must be elemen
geometry and elementary algebra. The courses in
subjects should be short, gi\gll;g only the
the algebra should be studied graphically, so
practice the ideas of elementary coordinate are
also being assimilated. The next pair of subjects should
be elementary trigonometry and the coordinate geometry
of the straight line and circle. The latter subject is a
SEident 15 then Gropared Vo enter Wpom comio sections, &

u 18 n Are aet10ns
very short mumap;: geometrical conic sections and a longer
one of analytical conics. But in all these courses great
care should be taken not to overload the mind with more

that in
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detail than is necessary for the exemplification of the
fundamental ideas,

The differential caleulus and afterwards the integral
calculus now remain to be attacked on the same system.
A good teacher will already have illustrated them by the
consideration of special cases in the course on algebra
and coordinate geometry, Some short book on three-
dimensional geometry must be also read.

This elementary course of mathematics is sufficient for
some types of professional career, It is also the necessary
preliminary for any one wishing to study the subject for
itg intrinsic interest. He is now prepared to commence
on a more extended course. He must not, however, hope
to be able to master it as a whole, The science has grown
to such vast proportions that probably no living mathe-
matician can clain to have achieved this.

Passing to the serious treatises on the subject to be read
after this preliminary course, the following may be men-
tioned : Cremona’s Pure Geometry (English Translation,
Clarendon Press, Oxford), Hobson’s T'reatise on Trigono-
metry, Chrystal’s T'reatise on Algebra (2 volumes), Salmon’s
Conic Sections, Lamb’s Differential Calcuwlus, and some
book on Diﬂermtiai Equations. The student will probably
not desire to direct equal attention to all these subjects,
but will etudy one or more of them, according as his interest
dictates. He will then be prepared to seclect more ad-
vanced works for himself, and to plunge into the higher
parts of the subject. If his interest lies in analysis, he
should now master an elementary treatise on the theory
of Functions of the Complex Variable ; if he prefers to
gpecialize in Geometry, must now proceed to the
standard treatises on the Analytical G of three
dimensions, But at this stage of his career in learning
he will not require the advice of this note.

I have deliberately refrained from mn% .?i

a8 to require special mention by name to
of all the others,

, -
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0. NONCONFORMITY: Its omammt Pnom **

rincipal W, B, Seruie, N Jrz_
iﬂﬂlhh dlﬂtv. and propordm. 'eChvistian W#Jd. g T i

5% ETHICS _ *
et o o ST S ety st

6. THE MAKING OF THE NEW mmwm ;

ndlmld m“-um i —
6o. MISSIONS: THEIR RISB ud B&r _

g 23 ey i

Jr" I .
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68. COMPARATIVE RELIGION

et I l*";u.m CARPENTER, D.Litt. * Puts into the reader’s hand a
wealth of learning and independent thought.," —Christian Weorid
24. A HISTORY OF FREEDOM OF THOUGHT

1“' 1. B. BURy, I.Hf,ll‘i I.EJI.
man will enjoy .f';n‘ Observer., 3
84. LITERATURE OF THE OLD TESTAMENT

" By Prof. (FEORGE .'\I.-_muﬁ. lﬁm]- T AD '”Tﬂflmm.
factory introduction, —CAristian Commontvealth.

go. THE CHURCH OF ENGLAND

By Canon K. W. WaTson. “ He has plainly en eavoured, in our judgment
with success, to weigh every movement in the Church by its permanent con*
tribution to the life of the whole. "—Sgectater.

4. RELIGIOUS DEVELOPMENT BETWEEN THE
OLD AND NEW TESTAMENTS
By Canon R. H. CuakLes, D.D), D.Litt. “Dr Charles has rendered

valuable service in providing a sketch of this literature,”— 7 fames.

102. HISTORY OF PHILOSOPHY.

By CLemenT C. J. Webn. " A wonderful little book. M Webb compresses

into 250 pages a subject-matter of perhaps unequalled complexity." — New
Statesman.

A little masterpiece, which every thinking

Social Science

\. PARLIAMENT

Its History, Constitution, and Practice. By Sir Courrexay P. IunenT,
G.C.B., K.C.S.I. _*The best book on the history and practice of the Howss
of Commons since Bagehot's ‘Constitution.’ " — Vordshire Pest.

S. THE STOCK EXCHANGE
« YW, FLIRST, tor o e Kconomist," "TﬁlﬂM““
be a revelation. . , . The book is clear, vigorous, and sane."—Morning L oader,
6. IRISH NATIONALITY

I S—

m—

timtly."-:Dd News.,
10. ’HE SOCIALIST MOVEMENT

By J. RAMSAY MACDONALD, M.P. " Admirably adapted for the purpose of

exposition,"— The 7imes.
1. CONSERVATISM
.JE dmm Hueu Crair, M.A., M.P. *One of those great little books which

om appear more than once in a generation."—Meorming Fost.
160 THE SCIENCE OF WEALTH

liviag sconomiata. . . » Original, reasunbie and illumisating. =T'A¢ e Nations
21, LIBERALISM

y L.T, Hosnouse, M.A. * A book of rare . v+« Wehaver
but praise for the rapid and masterly 5 [ the arguments from
principles which l'nrngnhnnplno!'lhhhnd. - M“.

4. THE EVOLUTION OF INDUSTRY

M, ume so
by all interested in the present state

7

terms hﬂl‘

.

with profit

By Mrs J. K. g'llllll. TAs glowing as it"h learned. No book could hhﬂt-
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