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general equation of the same form as # 41 =3,
This equation is #+a=b, and its solution is
x=b—a. Here our difficulties become acute ;
for this form can only be used for the numeri-
cal interpretation so long as b is greater than
a, and we cannot say without qualification
that a and b may be any constants. In other
words we have introduced a limitation on
the variability of the *‘ constants” a and b,
which we must drag like a chain throughout
all our reasoning. Really prolonged mathe-
matical investigations would be impossible
under such conditions. Every equation
would at last be buried under a pile of limita-
tions. But if we now interpret our symbols
as * operations,” all limitation vanishes like
magic. The equation 2 +1=3 gives =42,
the equation 2 +3=1 gives = —2, the equa-
tion o +a=>b gives #=>b—a which is an opera-
tion of addition or subtraction as the case
may be. We need never decide whether b —a
represents the operation of addition or of
subtraction, for the rules of procedure with
the symbols are the same in either case.

It does not fall within the plan of this work
to write a detailed chapter of elementary
algebra. Our object is merely to make plain
the fundamental ideas which guide the forma-
tion of the science. Accordingly we do not
further explain the detailed rules by which
the * positive and negative num " are
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multiplied and otherwise combined. We have
explained above that positive and negative
numbers are operations. They have also
been called *‘steps.” Thus 48 is the step
by which we go from 2 to 5, and —8 is the
step backwards by which we go from 5 to 2.
Consider the line OX divided in the way ex-
plained in the earlier part of the chapter, so
that its points represent numbers. Then <2

Sy B B +1 42 48
& 53510 A 3CDE >
is the step from O to B, or from 4 to C, or
(if the divisions are taken backwards along
0X’) from €’ to 4’, or from D’ to B’, and so
on. Similarly —2 is the step from O to B’,
or from B’ to D), or from B to O, or from C
to 4.

We may consider the point which is reached
by a step from O, as representative of that
step. Thus 4 represents 41, B represents
42, A’ represents —1, B’ represents —2, and
so on. It will be noted that, whereas previ-
ously with the mere ‘“‘unsigned ’’ real numbers
the points on one side of O only, namely along
OX, were representative of numbers, now
with steps every point on the whole line
- ' onbpt@sidegof().hwn
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operations or steps. These “signed” num-
bers are also particular cases of what have
been called vectors (from the Latin veho, 1
draw or carry). For we may think of &
particle as carried from O to 4, or from 4
to B.
In suggesting a few pages ago that the
practical man would object to the subtlety
involved by the introduction of the posi
and negative numbers, we were libelling that
excellent individual. For in truth we are on
the scene of one of his greatest triumphs. If
the truth must be confessed, it was the practi-
cal man himself who first employed the actual
symbols 4 and —. Their origin is not very
certain, but it seems most probable that they
arose from the marks chalked on chests of
goods in German warehouses, to denote excess
or defect from some standard weight. The
earliest notice of them ocecurs in a book pub-
| lished at Leipzig, in A.n. 1489. They seem
| first to have been employed in mathematics
by a German mathematician, Stifel, in a book
published at Nuremburg in 1544 A.D. But
then it is only recently that the Germans
have come to be looked on as emghl.tsuﬂy
a practical nation. There is an old epigram
which assigns the empire of the sea to the
| English, of the land to the French, and of the
' clouds to the Germans. Surely it was from
the clouds that the Germans fetched + and
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—; the 1deas which these symbols have
generated are much too important for the
welfare of humanity to have come from the
sea or from the land.

The possibilities of application of the posi-
tive and negative numbers are very obvious.
If lengths in one direction are represented
by positive numbers, those in the opposite
direction are represented by negative numbers.
If a velocity in one direction is positive, that
in the opposite direction is negative. If a
rotation round a dial in the opposite direction
to the hands of a clock (anti-clockwise) is
positive, that in the clockwise direction is
negative. If a balance at the bank is posi-
tive, an overdraft is negative. If vitreous
electrification is positive, resinous electrifica-
tion is negative. Indeed, in this latter case,
the terms positive electrification and negative
electrification, considered as mere names,
have practically driven out the other terms.
An endless series of examples could be given.
The idea of positive and negative numbers

has been practically the most successful of
mathematical subtleties.



CHAPTER VII

IMAGINARY NUMBERS

Ir the mathematical ideas dealt with in the
last chapter have been a popular success,
those of the present chapter have excited
almost as much general attention. DBut their
success has been of a different character, it
has been what the French term a succes de
scandale. Not only the practical man, but
also men of letters and philosophers have ex-
pressed their bewilderment at the devotion
of mathematicians to mysterious entities
which by their very name are confessed to be
imaginary. At this point it may be useful
to observe that a certain type of intellect
is always worrying itself and others by

discussion as to the applicability of technical
terms. Are the incommensurable numbers

properly called numbers ? Are the positive

the imaginary numbers imaginary, and are
they numbers ?—are types of such futile
questions. Now, it cannot be too clearly
understood that, in science, technical terms
are names arbitrarily assigned, like Christian

87
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names to children. There can be no question
of the names being right or wrong. They
may be judicious or injudicious ; for they can
sometimes be so arranged as to be easy to
remember, or so as to suggest relevant and
important ideas. But the essential principle
involved was quite clearly enunciated in
Wonderland to Alice by Humpty Dumpty,
when he told her, a propos of his use of words,
1 pay them extra and make them mean
what I like.” So we will not bother as to
whether imaginary numbers are imaginary,
or as to whether they are numbers, but will
take the phrase as the arbitrary name of a
certain mathematical idea, which we will now
endeavour to make plain.

The origin of the conception is in every
way similar to that of the positive and nega-
tive numbers. In exactly the same way it
is due to the three great mathematical ideas
of the variable, of algebraic form, and of
generalization. The positive and negative
numbers arose from the consideration of
equations like #+41=8, 2+4+8=1, and the
general form @+a=>b. Similarly the origin
of imaginary numbers is due to equations like
#241=8, 2248=1, and a22+4a=>. Exactly
the same process is gone through. The equa-
tion 2 41 =38 becomes #2==2, and this has two
solutions, either # = +4/2, or 2= —4/2. The
statement that there are these alternative
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solutions is usually written #=--4/2. Seo far
all is plain sailing, as it was in the previous
case. But now an analogous difficulty arises.
Ior the equation 224-8=1 gives #?= —2 and
there is no positive or negative number which,
when multiplied by itself, will give a negative
square. Hence, if our symbols are to mean
the ordinary positive or negative numbers,
there is no solution to a2= —2, and the equa-
tion is in fact nonsense. Thus, finally taking
the general form 22-+a=>b, we find the pair

of solutions @=-44/(b—a), when, and only
when, b is not less than a. Accordingly we
cannot say unrestrictedly that the ™ con-
stants ”’ @ and b may be any numbers, that is,
the *‘ constants” a and b are not, as they
ought to be, independent unrestricted ““ vari-
ables””; and so again a host of limitations
and restrictions will accumulate round our
work as we proceed.

The same task as before therefore awaits
us: we must give a new interpretation to our

symbols, so that the solutions j:‘\/(b—a)_for

the equation 22+a=>b always have meaning.
In other words, we require an interpretation

of the symbols so that v/a always has meanin
whether a be positive or negative.
course, the interpretation must be such that
all the ordinary formal laws for addition, sub-
traction, multiplication, and division hold
good ; and also it must not interfere with the
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generality which we have attained by the use
of the positive and negative numbers. In
fact, it must in a sense include them as
special cases. When a is negative we may
write —c? for it, sothat ¢2 is positive. Then

Va=1(—c?) =4/1(—1) x ¢2}
=+v(—=1) Ve2=¢ V(—=1).

Hence, if we can so interpret our symbols that

V/(—1) has a meaning, we have attained our

object. Thus v/(—1) has come to be looked
on as the head and forefront of all the
imaginary quantities.

This business of finding an interpretation

for 4/(—1) is a much tougher job than the
analogous one of interpreting —1. In faect,
while the easier problem was solved almost
instinctively as soon as it arose, it at first
hardly occurred, even to the greatest mathe-
maticians, that here a problem existed which
was perhaps capable of solution. Equations
like 2= —8, when they arose, were simply
ruled aside as nonsense.

However, it came to be gradually perceived
during the eighteenth century, and even
earlier, how very convenient it would be if
an interpretation could be assigned to these
nonsensical symbols. Formal reasoning with
these symbols was gone through, merely
assuming that they obeyed the ordinar
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algebraic laws of transformation : and it was
seen that a whole world of interesting results
could be attained, if only these symbols might
legitimately be used. Many mathematicians
were not then very clear as to the logic of
their procedure, and an idea gained ground
that, in some mysterious way, symbols which
mean nothing can by appropriate manipula-
tion yield valid proofs of propositions. No-
thing can be more mistaken. A symbol
which has not been properly defined is not a
symbol at all. It is merely a blot of ink on
paper which has an easily recognized shape.
Nothing can be proved by a succession of
blots, except the existence of a bad pen or a
careless writer. It was during this epoch
that the epithet *‘imaginary” came to be

applied to 4/(—1). What these mathema-
ticians had really succeeded in proving were

a series of hypothetical propositions, of which
this 1s the blank form: If interpretations

exist for 4//(—1) and for the addition, sub-
traction, multiplication, and division of

v/ (—1) which make the ordinary algebraic
rules (e.g. z+y=y-+az, ete.) to be satisfied,
then such and such results follows. It was
natural that the mathematicians should not
always appreciate the big *“ If,” which ought
to have preceded the statements of their re-
sults.

As may be expected the interpretation,
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when found, was a much more elaborate affair
than that of the negative numbers and the
reader’s attention must be asked for some
careful preliminary explanation. We have
already come across the representation of a

point by two numbers. By the aid of the

positive and negative numbers we can now
represent the position of any point in a plane
by a pair of such numbers. Thus we take
the pair of straight lines XOX’ and YOY’, at
right angles, as the ‘“ axes”” from which we
start all our measurements. Icaw ‘mea-
sured along OX and OY are positive, and
measured backwards along OX' and QY’ m
negative. Suppose that a pair mbers,
written in order,e.g. (+8, +1), so that ther
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s a first number (438 in the above example),
and a second number (41 in the above ex-
ample), represents measurements from O
along XOX' for the first number, and along
Y OY'forthe second number. Thus (cf. fig.9) in
(438, 4+1) a length of 8 units is to be measured
along XOX’ in the positive direction, that
1s from O towards X, and a length +1
measured along YOY’ in the positive direc-
tion, that is from O towards ¥. Similarly in
(—38, +1) the length of 8 units is to be
measured from O towards X', and of 1 unit
from O towards Y . Also in (—8, —1) the
two lengths are to be measured along 0X'
and OY' respectively, and in (43, —1) along
OX and OY’ respectively. Let us for the
moment call such a pair of numbers an
‘““ ordered couple.”” Then, from the two num-
bers 1 and 8, eight ordered couples can be

generated, namely

(+11 +3)! ("'lr +3)! ('—'1! _3)r (+ll _3)!
(48 +1), (=8, +1), (—8 —1L ChA 1%

Each of these eight “‘ordered couples ™ directs
a process of measurement along X0X" and
YOY' which is different from that directed

by any of the others.

The processes of mmsurémmt W
by the last four ordered couples, mentioned

above, are given pictorially in the figure.
The lengths OM and ON together correspond
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to (+38, +1), the lengths OM’ and ON
together correspond to (—38, +1), OM" and
ON' together to (—38, —1), and OM and
ON' together to (+8, —1). But by com-
pleting the various rectangles, it is easy to
see that the point P completely determines
and is determined by the ordered couple

Fig. 9.

(-|-_3, +1), the point P’ by (—8, +1), the
point P” by (—8, —1), and the point P"”* by
(+3, —1). More generally in the previous
figure (8), the point P corresponds to the
ordered couple (z, y), where # and y in the
figure are both assumed to be positive, the
point P’ corresponds to (2’, y), where 2’ in
the figure is assumed to be negative, P" to
(', ¥'), and P to (z, y’). Thus an ordered
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couple (z, y), where # and y are any positive
or negative numbers, and the corresponding
point reciprocally determine each other. It
1s convenient to introduce some names at this
juncture. In the ordered couple (z, y) the
first number @ is called the *‘ abscissa ’ of the
corresponding point, and the second number
y 1s called the ‘“‘ ordinate ” of the point, and
the two numbers together are called the ** co-
ordinates ”’ of the point. The idea of deter-
mining the position of a point by its * co-
ordinates ”’ was by no means new when the
theory of ‘‘ imaginaries’’ was being formed.
It was due to Descartes, the great French
mathematician and philosopher, and appears
in his Discours published at Leyden in 1637
A.D. The idea of the ordered couple as a
thing on its own account is of later growth
and 1s the outcome of the efforts to interpret
imaginaries in the most abstract way possible.
It may be noticed as a further illustration
of this idea of the ordered couple, that the
point M in fig. 9 is the couple (+38, 0), the
point N is the couple (0, +1), the point M’
the couple (—38, 0), the point N’ the couple
(0, —1), the point O the couple (0, 0).
Another way of representing the ordered
couple (z, y) is to think of it as representing

the dotted line OF (cf. fig. 8), rather than the
point P. Thus the ordered couple represents

a line drawn from an *‘ origin,” O, of a certain
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length and in a certain direction. The line
OP may be called the vector line from O to
P, or the step from O to P. We see, therefore,
that we have in this chapter only extended
the interpretation which we gave formerly of
the positive and negative numbers. This
method of representation by vectors is very
useful when we consider the meaning to be
assigned to the operations of the addition and
multiplication of ordered couples.

We will now go on to this question, and
ask what meaning we shall find it convenient
to assign to the addition of the two ordered
couples (2, y) and (2, y¥’'). The interpreta-
tion must, (a) make the result of addition
to be another ordered couple, (b) make the
operation commutative so that (z, )+
(o', y')=(2', ¥')+(z, y), (c) make the opera-
tion associative so that

{(@, )+ (", ¥')} + (u, v)

= (z, y)+{(2, ¥')+ (u, v)},
(d) make the result of subtraction unique,
so that when we seek to determine the

unknown ordered couple (z, y) so as to
satisfy the equation

(m’ y)+(a! b)——"-((?, d):

there is one and only one answer which we
can represent by

(z, y)= (e, d)— (a, D).
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All these requisites are satisfied by taking
(, y)4+(2’, y') to mean the ordered couple
(z+a', y+y'). Accordingly by definition we
put

(@, y)+ (@', ¥')=(z+a', y+y')

Notice that here we have adopted the mathe-
matical habit of using the same symbol + in
different senses. The + on the left-hand side
of the equation has the new meaning of +
which we are just defining ; while the two
+’s on the right-hand side have the meaning
of the addition of positive and negative num-
bers (operations) which was defined in the
last chapter. No practical confusion arises
from this double use.
As examples of addition we have

(+38, + 1)+(+2, + 6)=(+35, +7),
(+3, — 1)+(-—-2, — 6) =(+1, — 7),
( +8,+1)+(—3, —1)=(0, 0).
The meaning of subtraction is now settled
for us. We find that

(2, y)—(u, v)=(z—u, y—0).

Thus

(+3: -+ 9)_( +1, + l) =( +2, + l)r
and '

(+1, — 2)—(+2, — 9)=(-1, + 2),
and

(=1, — 2)—(+2, + 8)=(—38, — 8).

D
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It is easy to see that

(J,', y)""(u" U)-"—-—(:I?, y)+(‘—u" ks v)'
Also
(z, y)— (2, y)= (0, 0).

Hence (0, 0) is to be looked on as the zero
ordered couple. For example

(@, y)+(0, 0)=(a, y).

The pictorial representation of the addition
of ordered couples is surprisingly easy.

-.Y R

L ":ﬁ

Q.= o

Bt Ll
of M WM

N’ X

y‘l
Fig. 10,

Let OP represent (z, y) so that OM =2
and PM =y ; let OQ represent (z;, y;) so that
OM,=g,and QM,=y,;. Complete the paral-
lelogram OPRQ by the dotted lines PR and
QR, then the diagonal OR is the ordered
couple (424, y+11). For draw PS parallel
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to OX ; then evidently the triangles OQM,
and PRS are in all respects equal. Hence
MM’ =PS=z,, and RS=QM,; and there-
fore

OM'=0M+MM’ =z +a,,
RJ‘JII=SM’+RS =Y +yl-

Thus OR represents the ordered couple as
required. This figure can also be drawn with
OP and OQ in other quadrants.

It is at once obvious that we have here
come back to the parallelogram law, which
was mentioned in Chapter VI., on the laws of
motion, as applying to velocities and forces.
It will be remembered that, if OP and 0@
represent two velocities, a particle is said to
be moving with a velocity equal to the two
velocities added together if it be moving with
the velocity OR. In other words OR is said
to be the resultant of the two velocities OF
and 0Q. Again forces acting at a point of a
body can be represented by lines just as
velocities can be ; and the same parallelogram
law holds, namely, that the resultant of the
two forces OP and OQ is the force represented
by the diagonal OR. It follows that we can
look on an ordered couple as representing a
velocity or a force, and the rule which we
have just given for the addition of ordered
couples then represents the fundamental laws
of mechanics for the addition of forces and
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velocities. One of the most fascinating
characteristics of mathematics is the surpris-
ing way in which the ideas and results of
different parts of the subject dovetail into
each other. During the discussions of this
and the previous chapter we have been guided
merely by the most abstract of pure mathe-
matical considerations; and yet at the end
of them we have been led back to the most
fundamental of all the laws of nature, laws
which have to be in the mind of every engineer
as he designs an engine, and of every naval
architect as he calculates the stability of a
ship. It is no paradox to say that in our
most theoretical moods we may be nearest to
our most practical applications.




CHAPTER VIII

IMAGINARY NUMBERS (Continued)

THE definition of the multiplication of
ordered couples is guided by exactly the same
considerations as is that of their addition.
The interpretation of multiplication must be
such that

(a) the result is another ordered couple,

(8) the operation is commutative, so that

(z, y) x(2', ¥')=(2", ¥') x(z, y)

(v) the operation is associative, so that
{(z, y)x(', ¥')} x (u, v)
=(z, y)x{(2’, y)x(u, v)},

(8) must make the result of division unique

[with an exception for the case of the zero
couple (0, 0)], so that when we seek to deter-

mine the unknown couple (2, y) so as to
satisfy the equation

(w! y)x(a, b)= (c: d),

there is one and only one answer, which we
can represent by

(z, y)= (¢, d)=(a, b), or by (2, y)= (o b)
101
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(¢) Furthermore the law involving both
addition and multiplication, called the dis-
tributive law, must be satisfied, namely

(2, y) x {(a, b)+ (c, d) }
— (@ 9) % (a b)) +{(=s Y) (¢, )}

All these conditions (a), (8), (7), (), (¢) can
be satisfied by an interpretation which,
though it looks complicated at first, is capable
of a simple geometrical interpretation.

By definition we put

(z, y)x(@', y') = {(z2’ — yy'), (2y’ + 2'y)} (A)
This is the definition of the meaning of the
symbol x when it is written between two
ordered couples. It follows evidently from
this definition ‘that the result of multiplica-
tion is another ordered couple, and that the
value of the right-hand side of equation (4)
is not altered by simultaneously interchanging |
@ with 2', and y with y’. Hence conditions
(a) and (B) are evidently satisfied. The proof
of the satisfaction of (y), (8), (e) is equally ‘-
easy when we have given the geometrical s
interpretation, which we will proceed to do
in a moment. But before doing this it will
be interesting to pause and see whether we

have attained the object for which all this
elaboration was initiated.

We came across equations of the form
@2= —8, to which no solutions could be

e B, L b B U e -
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assigned 1n terms of positive and negative real
numbers. We then found that all our diffi-
culties would vanish if we could interpret the
equation 2#2= —1, t.e., if we could so define

v/(—1) that v/(—=1) x V/(—1)= —1.

Now let us consider the three special
ordered couples * (0,0), (1,0), and (0,1).

We have already proved that

(z, y)+(0, 0)=(a, y).

Furthermore we now have

o

(w! y) X (0: 0)=(O: 0)' -

Hence both for addition and for multiplica-
tion the couple (0,0) plays the part of zero in
elementary arithmetic and algebra; com-
pare the above equations with #+4+0=a, and
@ X 0=0. -

Again consider (1, 0): this plays the part
of 1 in elementary arithmetic and algebra.

In these elementary sciences the special
characteristic of 1 is that a# x1=a, for all

values of z. Now by our law of multiplica-
tion
(, y) x (1, 0)= {(z—0), (y+0)} = (2, y).
Thus (1, 0) is the unit couple.

* For the future we follow the custom of on ‘the
+ aig: wherever possible, thus (1,0) stands for (:_ I‘Q
and (0,1) for (0,4 II;.
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Finally consider (0,1): this will interpret
for us the symbol v/(—1). The symbol must
therefore possess the characteristic property

that v/(—1) x v/(—=1)= —1. Now by the
law of multiplication for ordered couples

(0,1) x (0,1) = {(0—1), (0+ 0)}= (—1, 0).

But (1,0) is the unit couple, and (—1, 0)
1s the negative unit couple ; so that (0,1) has
the desired property. There are, however,
two roots of —1 to be provided for, namely
+ 4/(—1). Consider (0,—1); here again re-
membering that (—1)2=1, we find, (0, —1)
X(0,—1)=(—1, 0).

Thus (0, —1) is the other square root of
V(—1). Accordingly the ordered couples
(0,1) and (0,—1) are the interpretations of
+ v/(—1) in terms of ordered couples. But
which corresponds to which? Does (0,1)
correspond to +4/(—1) and (0, —1) to
—4/(—1), or (0,1) to —4/(—1),and (0, —1)
to +4/(—1)? The answer is that it is per-
fectly indifferent which symbolism we adopt.

The ordered couples can be divided into
three types, (i) the * complex imaginary *
type (2,y), in which neither # nor y 1S Zero;
(1) the *““real” type (2,0); (iii) the ** pure
imaginary ’ type (0,y). Let us consider the
relations of these types to each other. First
multiply together the * complex imaginary
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couple (z,y) and the *“real ”’ couple (a,0), we
find

(@,0) % (2,y) =(az, ay).

Thus the effect is merely to multiply each

term of the couple (z,y) by the positive or
negative real number a.

Secondly, multiply together the ‘‘ complex
imaginary ~° couple (az,y) and the *‘pure
imaginary ’’ couple (0,b), we find

(0,0) x(a,y) =(—by, ba).

Here the effect is more complicated, and is
best comprehended in the geometrical inter-
pretation to which we proceed after noting
three yet more special cases.

Thirdly, we multiply the *“real” couple

(a,0) by the imaginary (0,b) and obtain
(a,0) x (0,b) =(0,ab).

Fourthly, we multiply the two “real”™
couples (a,0) and (a’, 0) and obtain

(a,0) x (a’,0)=(aa’,0).

Fifthly, we multiply the two “ imaginary
couples” (0,6) and (0, b) and obtain

10,b) x (0,0") =(—bb’, 0).

We now turn to the geometrical interpreta-
tion, beginning first with some special cases.
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Take the couples (1,3) and (2,0) and consider
the equation

(2,0) x (1,3) =(2,6)

M, O M N
Fig. 11.

In the diagram (fig. 11) the vector OP re-
presents (1, 8), and the vector ON represents
(2,0), and the vector OQ represents (2,6).
Thus the product (2,0) x(1,3) is found geo-
metrically by taking the length of the vector
OQ to be the product of the lengths of the
vectors OP and ON, and (in this case) by
producing OP to @ to be of the required
length. Again, consider the product (0,2) x
(1,3), we have

(0, 2) x(1, 8)=(—6, 2)

The vector ON,, corresponds to (0, 2) and
the vector OR to (—6,2). Thus OR which
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represents the new product is at right angles
to OQ and of the same length. Notice that
we have the same law regulating the length
of OQ as in the previous case, namely, that
its length is the product of the lengths of
the two vectors which are multiplied to-
gether ; but now that we have ON, along the
" ordinate ”’ axis OY, instead of ON along
the ‘‘abscissa’ axis OX, the direction of
OP has been turned through a right-angle.
Hitherto in these examples of multiplication
we have looked on the vector OP as modified
by the vectors ON and ON,. We shall get
a clue to the general law for the direction by
inverting the way of thought, and by think-
ing of the vectors ON and ON; as modified by
the vector OP. The law for the length re-
mains unaffected ; the resultant length is the
length of the product of the two vectors.
The new direction for the enlarged ON (i.e.
0Q) is found by rotating it in the (anti-clock-
wise) direction of rotation from OX towards
QY through an angle equal to the angle XOP:
it is an accident of this particular case that
this rotation makes OQ lie along the line OP.
Again consider the product of ON; and OF;
the new direction for the enlarged ON; (i.e.
OR) is found by rotating ON in the anti-
clockwise direction of rotation through an
angle equal to the angle XOP, namely, the
angle N;OR is equal to the angle XOP.
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The general rule for the geometrical repre-

sentation of multiplication can now be enunci-
ated thus:

Fig. 12,

The product of the two vectors OP and
0Q is a vector OR, whose length 1s the pro-
duct of the lengths of OP and OQ and whose
direction OR is such that the angle XOR is
equal to the sum of the angles XOP and X0Q.

Hence we can conceive the vector OP as
making the vector OQ rotate through an
angle XOP (i.e. the angle QOR = the angle
XOP), or the vector OQ as making the vector
OP rotate through the angle X0Q (i.e. the
angle POR =the angle X0Q).

We do not prove this general law, as we
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should thereby be led into more technieal
processes of mathematies than falls within the
design of this book. But now we can im-
mediately see that the associative law [num-
bered (v) above] for multiplication is satisfied.
Consider first the length of the resultant
vector ; this 1s got by the ordinary proecess
of multiplication for real numbers ; and thus
the associative law holds for it.

Again, the direction of the resultant vector
is got by the mere addition of angles, and the
associative law holds for this process also.

So much for multiplication. We have now
rapidly indicated, by considering addition and
multiplication, how an algebra or * calculus ™
of vectors in one plane can be constructed,
which is such that any two vectors in the
plane can be added, or subtracted, and can
be multiplied, or divided one by the other.

We have not considered the technical de-
tails of all these processes because it would
lead us too far into mathematical details;
but we have shown the general mode of pro-
cedure. When we are interpreting our alge-
braic symbols in this way, we are said to be
employing ‘“ imaginary quantities ™ or *“ com-
plex quantities.” These terms aré mere
details, and we have far too much to think
about to stop to enquire whether they are or

are not very happily chosen. _
The nett result of our investigations is that
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any equations like 24+8=2 or (2 48)2= —2
can now always be interpreted into terms of
vectors, and solutions found for them. In
seeking for such interpretations it is well to
note that 8 becomes (8,0), and —2 becomes
(—2,0), and # becomes the ‘‘unknown”
couple (u, v): so the two equations become
respectively (u, v)+4(8,0)=(2,0), and {(u,v)
+(3,0)}2 = (—2,0).

We have now completely solved the initial
difficulties which caught our eye as soon as
we considered even the elements of algebra.
The science as it emerges from the solution is
much more complex in ideas than that with
which we started. We have, in fact, created
a new and entirely different science, which
will serve all the purposes for which the old
science was invented and many more in addi-
tion. But, before we can congratulate our-
selves on this result to our labours, we must
allay a suspicion which ought by this time to
have arisen in the mind of the student. The
question which the reader ought to be asking
himself is : Where is all this invention of new
interpretations going to end ? It is true that
we have succeeded in interpreting algebra so
as always to be able to solve a quadratic
equation like #2—2x+4=0; but there are
an endless number of other equations, for
example, @3 —22+44=0, 2* +2342=0, and so
on without limit. Have we got to make a
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new science whenever a new equation ap-
pears !

Now, if this were the case, the whole of our
preceding investigations, though to some
minds they might be amusing, would in truth
be of very trifling importance. But the great
fact, which has made modern analysis possible,
is that, by the aid of this calculus of vectors,
every formula which arises can receive its
proper interpretation; and the ‘“ unknown ”
quantity in every equation can be shown to
indicate some vector. Thus the science is now
complete in itself as far as its fundamental
- deas are concerned. It wasreceiving its final
form about the same time as when the steam
engine was being perfected, and will remain
a great and powerful weapon for the achieve-
ment of the victory of thought over things
when curious specimens of that machine
repose in museums in company with the
helmets and breastplates of a slightly earlier

epoch.




CHAPTER IX

COORDINATE GEOMETRY

TaE methods and ideas of coordinate geo-
metry have already been employed in the
previous chapters. It is now time for us to
consider them more closely for their own
sake ; and in doing so we shall strengthen our
hold on other ideas to which we have attained.
In the present and succeeding chapters we
will go back to the idea of the positive and
negative real numbers and will ignore the
imaginaries which were introduced in the last
two chapters.

We have been perpetually using the idea
that, by taking two axes, XO0X’ and YO0Y’,
in a plane, any point P in that plane can be
determined in position by a pair of positive
or negative numbers # and y, where (ef.
fig. 13) @ 1s the length OM and y is the length
PM. This conception, simple as it looks, is
the main idea of the great subject of co-
ordinate geometry. Its discovery marks a
momentous epoch in the history of mathe-
matical thought. It is due (as has been

112
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already said) to the philosopher Descartes,
and occurred to him as an important mathe-
matical method one morning as he lay in bed.
Philosophers, when they have possessed a
thorough knowledge of mathematics, have
been among those who have enriched the

¥

Fig. 13.

science with some of its best ideas. On the
other hand it must be said that, with hardly
an exception, all the remarks on mathematics
made by those philosophers who have pos-
sessed but a slight or hasty and late-acquired
knowledge of it are entirely worthless, being
either trivial or wrong. The fact is a curious
one ; since the ultimate ideas of mathematics
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seem, after all, to be very simple, almost
childishly so, and to lie well within the
province of philosophical thought. Probably
their very simplicity is the cause of error; we
are not used to think about such simple
abstract things, and a long training is neces-
sary to secure even a partial immunity from
error as soon as we diverge from the beaten
track of thought.

The discovery of coordinate geometry, and
also that of projective geometry about the
same time, illustrate another fact which is
being continually verified in the history of
knowledge, namely, that some of the greatest
discoveries are to be made among the most
well-known topics. By the time that the
seventeenth century had arrived, geometry
had already beenstudiedforover two thousand
years, even if we date its rise with the Greeks.
Euclid, taught in the University of Alexandria,
being born about 330 B.c.; and he only
systematized and extended the work of a long
series of predecessors, some of them men of
genius, After him generation after genera-
tion of mathematicians laboured at the im-
provement of the subject. Nor did the
subject suffer from that fatal bar to progress,
namely, that its study was confined to a
narrow group of men of similar origin and
outlook—quite the contrary was the case;
by the seventeenth century it had passed



COORDINATE GEOMETRY 115

through the minds of Egyptians and Greeks
of Arabs and of Germans. And yet, after ali
this labour devoted to it through so many
ages by such diverse minds its most important
secrets were yet to be discovered.

No one can have studied even the elements
of elementary geometry without feeling the
lack of some guiding method. Every proposi-
tion has to be proved by a fresh display of in-
genuity ; and a science for which this is true
lacks the great requisite of scientific thought,
namely, method. Now the especial point of

coordinate geometry is that for the first

time it introduced method. The remote
deductions of a mathematical science are not
of primary theoretical importance. The
science has not been perfected, until it consists
in essence of the exhibition of great allied
methods by which information, on any desired
topic which falls within its scope, can easily
be obtained. The growth of a science is not
primarily in bulk, but in ideas ; and the more
the ideas grow, the fewer are the deductions
which it is worth while to write down. Un-
fortunately, mathematics is always encum-
bered by the repetition in text-books of
numberless subsidiary propositions, whose im-
portance has been lost by their absorption
into the role of particular cases of more
general truths—and, as we have already in-
sisted, generality is the soul of mathematics.
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Agamn, coordinate geometry illustrates
another feature of mathematics which has
already been pointed out, namely, that mathe-
matical sciences as they develop dovetail into
each other, and share the same ideas in com-
mon. It is not too much to say that the
various branches of mathematies undergo a

perpetual process of generalization, and that
as they become generalized, they coalesce.
Here again the reason springs from the very
nature of the secience, its generality, that is
to say, from the fact that the science deals
with the general truths which apply to all
things in virtue of their very existence as
things. In this connection the interest of co-
ordinate geometry lies in the fact that it
relates together geometry, which started as
the science of space, and algebra, which has
its origin in the science of number. :
~ Let us now recall the main ideas of the two
sciences, and then see how they are related
by Descartes’ method of coordinates. Take
algebra in the first place. We will not trouble
ourselves about the imaginaries and will
think merely of the real numbers with posi-
tive or negative signs. The fundamental idea
1s that of any number, the variable number,
which is denoted by a letter and not by any
definite numeral. We then proceed to the
consideration of correlations between vari-

ables. For example, if # and y are two vari-

—— . TS
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ables, we may conceive them as correlated by
the equations # 4y =1, or by 2 —y=1, or in
any one of an indefinite number of other ways.
This at once leads to the application of the
idea of algebraic form. We think, in fact, of
any correlation of some interesting type, thus
rising from the initial conception of wvari-
able numbers to the secondary conception of
variable correlations of numbers. Thus we
generalize the correlation #+y=1, into the
correlation az+by=c. Here a and b and ¢,
being letters, stand for any numbers and are
in fact themselves variables. But they are
the variables which determine the variable
correlation : and the correlation, when deter-
mined, correlates the variable numbers 2 and
y. Variables, like a, b, and ¢ above, which
are used to determine the correlation are
called * constants,” or parameters. The use
of the term °‘constant” in this connection
for what is really a variable may seem at first
sight to be odd ; but it is really very natural.
For the mathematical investigation is con-
cerned with the relation between the variables
x and y, after a, b, care supposed to have been
determined. So in a sense, relatively to @
and y, the ‘‘ constants ™ a, b, and ¢ are con-
stants. Thus az +by=c stands for the general
example of a certain algebraic form, that 1s,
for a variable eorrelation belonging to a certain

class.
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Again we generalize 22442=1 into qa2--
by?2=e¢, or still further into ax? -+ 2hay + by
=¢, or, still further, into ax? +2haxy + by +‘2§m
+2fy=c.

Here again we are led to variable correlations
which are indicated by their various algebraic
forms.

Now let us turn to geometry. The name
of the science at once recalls to our minds
the thought of figures and diagrams exhibiting
triangles and rectangles and squares and
circles, all in special relations to each other.
The study of the simple properties of these
figures is the subject matter of elementary
geometry, as it is rightly presented to the
beginner. Yet a moment’s thought will show
that this is not the true conception of the
subject. It may be right for a child to com-
mence his geometrical reasoning on shapes,
like triangles and squares, which he has cut
out with scissors. What, however, is a tri-
angle ? Itisa figure marked out and bounded
by three bits of three straight lines.

Now the boundary of spaces by bits of
lines is a very complicated idea, and not at
all one which gives any hope of exhibiting

the simple general conceptions which should
form the bones of the subject. We want
something more simple and more general. It
is this obsession with the wrong initial ideas
—very natural and good ideas for the creation
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of first thoughts on the subject—which was
the cause of the comparative sterility of the
study of the science during so many centuries.
Coordinate geometry, and Descartes 1its in-
ventor, must have the credit of disclosing the
true simple objects for geometrical thought.
In the place of a bit of a straight line, let
us think of the whole of a straight line
throughout its unending length in both direc-
tions. This is the sort of general idea from
which to start our geometrical investigations.
The Greeks never seem to have found any
use for this conception which is now funda-
mental in all modern geometrical thought.
Euclid always contemplates a straight line as
drawn between two definite points, and is
very careful to mention when it is to be pro-
duced beyond this segment. He never thinks
of the line as an entity given once for all as a
whole. This careful definition and limita-
tion. so as to exclude an infinity not imm -
atelv apparent to the senses, was very charac-
terist: the soks 1In al 1elr many
activities. It is enshrined in the diiference
hetween Greek architecture and Gothic archi-
tecture, and between the Greek religion aq_d :
the modern religion. The spire on a Gothic "

cathedral and the importance of the un-
bounded straight line in modern geometry
are both emblematic of the transformation of

the modern world.
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The straight line, considered as a whole,
is accordingly the root idea from whic
modern geometry starts. But then other
sorts of lines occur to us, and we arrive at the
conception of the complete curve which at
every point of it exhibits some uniform char-
acteristic, just as the straight line exhibits
at all points the characteristic of straight-
ness. For example, there is the circle which
at all points exhibits the characteristic of
being at a given distance from its centre, and
again there is the ellipse, which is an oval
curve, such that the sum of the two distances
of any point on it from two fixed points, called
its foct, is constant for all points on the curve.
It isevident that a circle 1s merely a particu-
lar case of an ellipse when the two foci are
superposed in the same point; for then the
sum of the two distances is merely twice the
radius of the circle. The ancients knew the
properties of the ellipse and the circle and, of
course, considered them as wholes. For ex-
ample, Euclid never starts with mere seg-
ments (t.e., bits) of circles, which are then pro-
longed. He always considers the whole circle
as described. It is unfortunate that the
circle is not the true fundamental line in
geometry, so that his defective consideration
of the straight line might have been of less
consequence.

This general idea of a curve which at any
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point of it exhibits some uniform property is
expressed in geometry by the term " locus.”
A locus is the curve (or surface, 1f we do not
confine ourselves to a plane)formed by points,
all of which possess some given property.
To every property in relation to each other
which points can have, there corresponds
some locus, which consists of all the points
possessing the property. In investigating
the properties of a locus considered as a whole,
we consider any point or points on the locus.
Thus in gepmetry we again meet with the
fundamental idea of the variable. Further-
more, in classifying loci under such headings
as straight lines, circles, ellipses, etc., we again
find the idea of form.

Accordingly, as in algebra we are concerned
with variable numbers, correlations between
variable numbers, and the classification of
correlations into types by the idea of algebraie
form : so in geometry we are concerned with
variable points, variable points satisfying
some condition so as form to a locus, and the
classification of loci into types by the idea of

conditions of the same form.
ssence of coord
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presented by the corresponding correlation
between # and y. Finally to correlations
expressible in some general algebraic form,
such as ax+by=c¢, there correspond loeci of
some general type, whose geometrical con-
ditions are all of the same form. We
have thus arrived at a position where we
can effect a complete interchange in ideas
and results between the two sciences. Kach
science throws light on the other, and itself
gains immeasurably in power. It is im-
possible not to feel stirred at the thought
of the emotions of men at certain historic
moments of adventure and discovery—
Columbus when he first saw the Western
shore, Pizarro when he stared at the Pacific
Ocean, Franklin when the electric spark came
from the string of his kite, Galileo when he
first turned his telescope to the heavens.
Such moments are also granted to students
in the abstract regions of thought, and high
among them must be placed the morning when
Descartes lay in bed and invented the method
of coordinate geometry.

When one has once grasped the idea of co-
ordinate geometry, the immediate question
which starts to the mind is, What sort of
loci correspond to the well-known algebraic
forms ? For example, the simplest among
the general types of algebraic forms is az +
by=c. The sort of locus which corresponds
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to this 1s a straight line, and conversely to
every straight line there corresponds an equa-
tion of this form. It is fortunate that the
simplest among the geometrical loci should
correspond to the simplest among the alge-
braic forms. Indeed, it is this general corre-
spondence of geometrical and algebraic sim-
plicity which gives to the whole subject its
power. It springs from the fact that the
connection between geometry and algebra is
not casual and artificial, but deep-seated and
essential. The equation which corresponds
to a locus is called the equation *““of ” (or
““to ”’) the locus. Some examples of equations
of straight lines will illustrate the subject.
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Consider y —a =0 ; here the a, b, and ¢, of
the general form have been replaced by —1, 1,
and 0 respectively. This line passes through
the ““origin,” O, in the diagram and bisects
the angle XOY. It is the line L'OL of the
diagram. The fact that it passes through the
origin, 0, is easily seen by observing that the
equation is satisfied by putting 2=0 and
y=0 simultaneously, but 0 and 0 are the co-
ordinates of 0. In fact it is easy to generalize
and to see by the same method that the
equation of any line through the origin is of
the form az+by=0. The locus of equation
y+a=0 also passes through the origin and
bisects the angle X'0Y : it 1s the line L;OL'y
of the diagram.

Consider y—ax=1: the corresponding locus
does not pass through the origin. We there-
fore seek where it cuts the axes. It must cut
the axis of # at some point of coordinates
2 and 0. But putting y=0 in the equation,
we get #=—1; so the coordinates of this
point (4) are —1 and 0. Similarly the point
(B) where the line cuts the axis QY are 0 and
1. The locus is the line 4B in the figure and
is parallel to LOL’. Similarly y+a=1 is the
equation of line 4,B of the figure; and the
locus is parallel to LloL’p Itis easy to prove
the general theorem that two lines represented
by equations of the forms az +by=0 and
ax -+by=c are parallel.
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The group of loci which we next come upon
are sulliciently important to deserve a chap-
ter to themselves, But before going on to

them we will dwell a little longer on the main
ideas of the subject.

The position of any point P is determined
by arbitrarily choosing an origin, 0, two axes,
OX and OY, at right-angles, and then by
noting its coordinates # and y, i.e. OM and
PM (cf. fig. 18). Also, as we have seen in the
last chapter, P can be determined by the
" vector ” OP, where the idea of the vector
includes a determinate direction as well as a
determinate length. From an abstract
mathematical point of view the idea of an
arbitrary origin may appear artificial and
clumsy, and similarly for the arbitrarily
drawn axes, OX and OY. But in relation to
the application of mathematics to the event
of the Universe we are here symbolizing with
direct simplicity the most fundamental fact
respecting the outlook on the world afforded
to us by our senses. We each of us refer
our sensible perceptions of things to an origin
which we call *“here™: our location in a
particular part of space round which we
group the whole Universe is the essential fact
of our bodily existence. We can imagmne
beings who observe all phenomena in all space
with an equal eye, unbiassed in favour of any
part. With us it is otherwise, a cat at our
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feet claims more attention than an earth-
quake at Cape Horn, or than the destruction
of a world in the Milky Way. It is true that
in making a common stock of our knowledge
with our fellowmen, we have to wailve some-
thing of the strict egoism of our own indi-
vidual “ here.” We substitute *‘ nearly
here ’ for ‘‘ here’ ; thus we measure miles
from the town hall of the nearest town, or
from the capital of the country. In measur-
ing the earth, men of science will put the
origin at the earth’s centre; astronomers
even rise to the extreme altruism of putting
their origin inside the sun. But, far as this
last origin may be, and even if we go further
to some convenient point amid the nearer
fixed stars, yet, compared to the immeasur-
able infinities of space, it remains true that
our first procedure in exploring the Universe
is to fix upon an origin *‘ nearly here.”

Again the relation of the coordinates OM
and MP (i.e.  and y) to the vector OP is an
instance of the famous parallelogram law, as
can easily be seen (¢f. fig. 8) by completing
the parallelogram OMPN. The idea of the
“ yector ” OP, that is, of a directed magni-
tude, is the root-idea of physical science.
Any moving body has a certain magnitude
of velocity in a certain direction, that is to
say, its velocity is a directed magnitude, a
vector. Again a force has a certain magni-
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tude and has_ a definite direction. Thus
when in analytical geometry the ideas of thé

‘i ...

23 -
origin,” of * coordinates,” and of * vee-




CHAPTER X

CONIC SECTIONS

WaeN the Greek geometers had exhausted,
as they thought, the more obvious and inter-
esting properties of figures made up of
straight lines and circles, they turned to
the study of other curves; and, with their
almost infallible instinet for hitting upon
things worth thinking about, they chiefly
devoted themselves to conic sections, that
is, to the curves in which planes would cut
the surfaces of circular cones. The man
who must have the credit of inventing the
study is Menaechmus (born 375 B.C. and
died” 325 B.c.); he was a pupil of Plato
and one of the tutors of Alexander the
Great. Alexander, by the by, 1s a con-
spicuous example of the advantages of good
tuition, for another of his tutors was the
philosopher Aristotle. We may suspect that
Alexander found Menaechmus rather a dull
teacher, for it is related that he asked for the

128
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proofs to be made shorter. It was to this
request that Menaechmus replied: *In the
country there are private and even royal
roads, but in geometry there is only one road
for all.” This reply no doubt was true
enough in the sense in which it would have
been immediately understood by Alexander.
But if Menaechmus thought that his proofs
could not be shortened, he was grievously
mistaken ; and most modern mathematicians
would be horribly bored, if they were com-
pelled to study the Greek proofs of the pro-
perties of conic sections. Nothing illustrates
better the gain in power which is obtained by
the introduction of relevant ideas into a
science than to observe the progressive
shortening of proofs which accompanies the
growth of richness in idea. There is a cer-
tain type of mathematician who is always
rather impatient at delaying over the ideas
of a subject : he is anxious at once to get on
to the proofs of *‘ important ** problems. The
history of the science is entirely against him,
There are royal roads in science; but those
who first tread them are men of genius and

not kings.
The way in which conic sections first pre-

sented themselves to mathematicians was as
follows : think of a cone (¢f. fig. 15), whose
vertex (or point) is V, standing on a circular
base STU. For example, a conical shade to
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an electric light is often an example of such a
surface. Now let the ‘‘ generating ™ lines
which pass through V" and lie on the surface
be all produced backwards; the result 1s a
double cone, and PQR is another circular cross
section on the opposite side of V' to the cross
section STU. The axis of the cone CV ("’
passes through all the centres of these circles
and is perpendicular to their planes, which
are parallel to each other. In the diagram
the parts of the curves which are supposed
to lie behind the plane of the paper are dotted
lines, and the parts on the plane or in front
of it are continuous lines. Now suppose this
double cone is cut by a plane not perpen-
dicular to the axis CV(’, or at least not
necessarily perpendicular to it. Then three
cases can arise :—

(1) The plane may cut the cone in a closed
oval curve, such as ABA'B’ which lies en-
tirely on one of the two half-cones. In this
case the plane will not meet the other half-cone
at all. Such a curve is called an ellipse ; it 1s
an oval curve. A particular case of such a
section of the cone is when the plane is per-
pendicular to the axis CV'C’, then the section,
such as STU or PQR, is a circle. Hence a
circle is a particular case of the ellipse. '

(2) The plane may be parallel to a tangent
plane touching the cone along one of its ** gen-
erating ”’ lines as for example the plane dg:;e
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curve Dy A4,D," in the diagram is parallel to
the tangent plane touching the cone along the
generating line V5 ; the curve is still confined
to one of the half-cones, but it is now not a
closed oval curve, it goes on endlessly as long
as the generating lines of the half-cone are
produced away from the vertex. Such a
conic section is called a parabola.

(8) The plane may cut both the half-cones,
so that the complete curve consists of two
detached portions, or “branches” as they
are called, this case is illustrated by the two
branches Ga42G5" and LaA4' Ly" which together
make up the curve. Neither branch is closed,
each of them spreading out endlessly as the
two half-cones are prolonged away from the
vertex. Such a conic section is called a
hyperbola.,

There are accordingly three types of conie
sections, namely, ellipses, parabolas, and
hyperbolas. It is easy to see that, in a sense,
parabolas are limiting cases lying between
ellipses and hyperbolas. They form a more
special sort and have to satisfy a more par-
ticular condition. These three names are
apparently due to Apollonius of Perga (born
about 260 B.c., and died about 200 B.c.), who
wrote a systematic treatise on conie sections
which remained the standard work till the

sixteenth century.
It must at once be apparent how awkward
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and difficult the investigation of the proper-@
ties of these curves must have been to the
Greek geometers. The curves are plane
curves, and yet their investigation mvolve&

é%;; :
'-'

tq-

---..,—"
(s,

Fig. 15

the drawing in perspective of a solid ﬁgure.
Thus in the diagram given above we have
practically drawn no subsidiary lines and yet
the figure is sufficiently complicated. The
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curves are plane curves, and it seems obvious
that we should be able to define them without

Fig. 16

going beyond the plane into a solid figure.
At the same time, just as in the ° solid ”

Fig. 17

definition there is one uniformm method of
definition—namely, the section of a cone by
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a plane—which yields three cases, so in any
““ plane ”’ definition there also should be one
uniform method of procedure which falls into
three cases. Their shapes when drawn on
their planes are those of the curved lines in :
the three figures 16, 17, and 18. The |
points 4 and A4’ in the figures are called

=
x

Fig. 18

the vertices and the line 44’ the major axis.
It will be noted that a parabola (cf. fig. 17)
has only one vertex. Apollonius proved * that

the rati 2 _ ( W
e ratio of PM* to AM.MA' \i.e 1 M A

remains constant both for the ellipse and the
hyperbola (figs. 16 and 18), and that the ratio

* Cf. Ball, loc. cit., for this account of Apoll
Pappus. ; T
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of PM2 to AM is constant for the parabola
of fig. 17; and he bases most of his work
on this fact. We are evidently advanecing
towards the desired uniform definition which
does not go out of the plane; but have not
yet quite attained to uniformity.

In the diagrams 16 and 18, two points, §
and S’, will be seen marked, and in diagram 17
one point, 8. Theseare the foci of the curves,
and are points of the greatest importance.
Apollonius knew that for an ellipse the sum
of SP and S’P (i.e. SP+8'P) is constant as
P moves on the curve, and is equal to 44"
Similarly for a hyperbola the difference 5°P —
SP is constant, and equal to 44" when P is
on one branch, and the difference SP’'—S"P"
is constant and equal to 44’ when P’ is on
the other branch. But no corresponding
point seemed to exist for the parabola.

Finally 500 years later the last great Greek
geometer, Pappus of Alexandria, discovered
the final secret which completed this line of
thought. In the diagrams 16 and 18 will be
seen two lines, XN and X'N’, and in diagram
17 the single line, XN. These are the direc-
trices of the curves, two each for the ellipse
and the hyperbola, and one for the parabola.
Each directrix corresponds to its nearer focus.
The characteristic property of a focus, S, and
its corresponding directrix, XN, for any one
of the three types of curve, is that the ratio
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s s B
SP to P\ (z.c. B
the perpendicular on the directrix from P,
and P is any point on the curve. Here we
have finally found the desired property of the
curves which does not require us to leave
the plane, and is stated uniformly for all
O l
p 1S less
than 1, for parabolas it is equal to 1, and for
hyperbolas it is greater than 1.

When Pappus had finished his investiga-
tions, he must have felt that, apart from
minor extensions, the subject was practically
exhausted ; and if he could have foreseen
the history of science for more than a thousand
years, it would have confirmed his belief.
Yet in truth the really fruitful ideas in con-
nection with this branch of mathematics had
not yet been even touched on, and no one
had guessed their supremely important ap-
plications in nature. No more impressive
warning can be given to those who would
confine knowledge and research to what is
apparently useful, than the reflection that
conic sections were studied for eighteen hun-
dred years merely as an abstract science,
without a thought of any utility other than
to satisfy the craving for knowledge on the

part of mathematicians, and that then at the

end of this long period of abstract study, they
. * Cf. Note B, p. 250,

) 1s constant, where PN 1s

three curves. For ellipses the ratio*

T
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were found to be the necessary key with
which to attain the knowledge of one of the
most important laws of nature.

Meanwhile the entirely distinet study of
astronomy had been going forward. The
great Greek astronomer Ptolemy (died 168
A.D.) published his standard treatise on the
subject in the University of Alexandria, ex-
plaining the apparent motions among the
fixed stars of the sun and planets by the con-
ception of the earth at rest and the sun and
the planets circling round it. During the
next thirteen hundred years the number and
the accuracy of the astronomical observa-
tions increased, with the result that the de-
seription of the motions of the planets on
Ptolemy’s hypothesis had to be made more
and more complicated. Copernicus (born
1473 A.p. and died 1548 A.p.) pointed out
that the motions of these heavenly bodies
could be explained in a simpler manner if the
sun were supposed to rest, and the earth and
planets were conceived as moving round it.
However, he still thought of these motions as
essentially circular, though modified by a set
of small corrections arbitrarily superimposed
on the primary circular motions. So the
matter stood when Kepler was born at Stutt-
gart in Germany in 1571 A.p. There were

two sciences, that of the geometry of conie
sections and that of astronomy, both of which
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had been studied from a remote antiquity
without a suspicion of any connection be-
tween the two. Kepler was an astronomer,
but he was also an able geometer, and on the
subject of conic sections had arrived at ideas
in advance of his time He is only one of
many examples of the falsity of the idea that
success in scientific research demands an ex-
clusive absorption in one narrow line of study.
Novel 1deas are more apt to spring from
an unusual assortment of knowledge—not
necessarily from vast knowledge, but from a
thorough conception of the methods and ideas
of distinct lines of thought. It will be re-
membered that Charles Darwin was helped
to arrive at his conception of the law of
evolution by reading Malthus’ famous Essay
on Population, a work dealing with a dif-
ferent subject—at least, as it was then
thought.

Kepler enunciated three laws of planetary
motion, the first two in 1609, and the third
ten years later. They are as follows :

(1) The orbits of the planets are ellipses,
the sun being in the focus.

(2) As a planet moves in its orbit, the
radius vector from the sun to the planet
sweeps out equal areas in equal times.

(8) The squares of the periodic times of the
several planets are proportional to the cubes
of their major axes.
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These laws proved to be only a stage to-
wards a more fundamental development of
ideas. Newton (born 1642 A.p. and died
1727 A.p.) conceived the idea of universal
gravitation, namely, that any two pieces of
matter attract each other with a force pro-
portional to the product of their masses and
inversely proportional to the square of their
distance from each other. This sweeping
general law, coupled with the three laws of
motion which he put into their final general
shape, proved adequate to explain all astro-
nomical phenomena, including Kepler’s laws,
and has formed the basis of modern physies.
Among other things he proved that comets
might move in very elongated ellipses, or in
parabolas, or in hyperbolas, which are nearly
parabolas. The comets which return—such
as Halley’s comet—must, of course, move in
ellipses. But the essential step in the proof of
the law of gravitation, and even in the sug-
gestion of its initial conception, was the veri-
fication of Kepler’s laws connecting the

motions of the planets with the theory of

conic sections.
From the seventeenth century onwards the
abstract theory of the curves has shared in

the double renaissance of geometry due to
the introduction of coordiil:te geoel::try and
of projective geometry. projective geo-
metry the fundamental ideas cluster round

»
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the consideration of sets (or pencils, as they
are called) of lines passing through a common
point (the vertex of the ™ pencil ™). Now
(cf. fig. 19) if 4, B, C, D, be any four fixed
points on a conic section and P be a variable
point on the curve, the pencil of lines P4,

*

Fig. 19. .

PB, PC, and PD, has a special property,
known as the constancy of its cross ratio. It
will suffice here to say that cross ratio is a
fundamental idea in projective geometry.
For projective geometry this is really the de-
finition of the curves, or some analogous pro-
perty which is really equivalent to it. It
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will be seen how far in the course of ages of
study we have drifted away from the old
original idea of the sections of a circular cone.
We know now that the Greeks had got hold
of a minor property of comparatively slight
importance ; though by some divine good
fortune the curves themselves deserved all
the attention which was paid to them. This
unimportance of the *‘ section ™ idea is now
marked in ordinary mathematical phrase-
ology by dropping the word from their
names. As often as not, they are now
named merely * conics” instead of ** conic
sections.”

Finally, we come back to the point at
which we left coordinate geometry in the last
chapter. We had asked what was the type
of loci corresponding to the general algebraic
form axz+by=c, and had found that it was
the class of straight lines in the plane. We
had seen that every straight line possesses an
equation of this form, and that every equation
of this form corresponds to a straight line.
We now wish to go on to the next genera.l
type of algebraic forms. This is ev"fdently
to be obtained by introducing terms involv-
ing 2 and ay and y2. Thus the new general

form must be written—
am2+2hmy+by2+2gw+2fy+o=0
What does this represent ? The answer is
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that (when it represents any locus) it always re-
presents a conic section, and, furthermore,
that the equation of every conic section can
always be put into this shape. The discrimi-
nation of the particular sorts of conics as given
by this form of equation is very easy. It en-
tirely depends upon the consideration of ab—
h?, where a, b, and h, are the * constants *’ as
written above. If ab—72 is a positive number,
the curve is an ellipse ; if ab— A2 =0, the curve
1s a parabola: and if ab—h2 is a negative
number, the curve is a hyperbola.

For example, put a=b=1, h=g=f=0,
¢= —4. We then get the equation #2442 —4
=0. It is easy to prove that this is the equa-
tion of a circle, whose centre is at the origin,
and radius is 2 units of length. Now ab—#2
becomes 1 x1—02, that is, 1, and is therefore
positive. Hence the circle is a particular
case of an ellipse, as it ought to be. Genera-
lising, the equation of any circle can be
put into the form a(22+4-y2)+2g2 +2fy +¢=0.
Hence ab—h2 becomes a—0, that is, a2,
which is necessarily positive. Accordingly
all circles satisfy the condition for ellipses.

The general form of the equation of a para-
bola is

(dz+ey)? +2gx +2fy +¢ =0,
s0 that the terms of the second degree, as



CONIC SECTIONS 143

they are called, can be written as a perfect
square. Ior squaring out, we get

d?x2 +2dexy —|—62y'2 4282 +2fy+c3

so that by comparison a=d?, h=de, b=e¢2,
and therefore ab—h?=d?¢2—(de)2=0. Hence
the necessary condition is automatically satis-
fied. The equation 2zy—4=0, where a=b
=g=f=0, h=1, ¢= —4, represents a hyper-
bola. For the condition ab—h2 becomes
0—12, that i1s, —1, which is negative.

The limitation, introduced by saying that,
when the general equation represents any locus,
it represents a conic section, is necessary, be-
cause some particular cases of the general
equation represent no real locus. For ex-
ample 22+4y2+4+1=0 can be satisfied by no
real values of # and y. It is usual to say that
the locus is now one composed of imaginary
points. But this idea of imaginary points in
geometry is really one of great complexity,
which we will not now enter 1nto.

Some exceptional cases are included in the
general form of the equation which may not
be immediately recognized as conic sections.
By properly choosing the constants the equa-
tion can be made to represent two straight
lines. Now two intersecting straight lines
may fairly be said to come under the Greek

idea of a conic section. For, by referring to
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the picture of the double cone above, it wll
be seen that some planes through the vertex,
}7, will cut the cone in a pair of straight lines
intersecting at V. The case of two parsallel
straight lines can be included by considering
a circular cylinder as a particular case of a
cone. Then a plane, which cuts it and is
parallel to its axis, will cut it in two parallel
straight lines. Anyhow, whether or no the
ancient Greek would have allowed these
special cases to be called conic sections, they
are certainly included among the curves re-
presented by the general algebraic form of
the second degree. This fact 1s worth noting ;
for it is characteristic of modern mathematics
to include among general forms all sorts of
particular cases which would formerly have
received special treatment. This is due to
its pursuit of generality.
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CHAPTER XI
FUNCTIONS

Tae mathematical use of the term function
has been adopted also in common life. For
example, ‘‘ His temper is a function of his
digestion,”” uses the term exactly in this
mathematical sense. It means that a rule
can be assigned which will tell you what his
temper will be when you know how his
digestion is working. Thus the idea of a
““ function ”’ is simple enough, we only have
to see how it is applied in mathematics to
variable numbers, Let us think first of some
concrete examples : If a train has been travel-
ling at the rate of twenty miles per hour, the
distance (s miles) gone after any number of
hours, say ¢, is given by s=20x{; and ¢ is
called a function of £. Also 20 x{ is the fune-
tion of £ with which s is identical. 1f John
is one year older than Thomas, then, when
Thomas is at any age of @ years, John’s age
(y years) is given by y=a+1; and y is a
function of @, namely, is the function 2+-1.

In these examples ¢ and @ are called the

145
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‘““ arguments ’’ of the functions in which they
appear. Thus ¢ is the argument of the func-
tion 20 xi, and « is the argument of the func-
tion 241. If s=20x¢, and y=a+1, then s
and y are called the ** values »’ of the functions
20 xt and @ +1 respectively.

Coming now to the general case, we can
define a function in mathematics as a corre-
lation between two variable numbers, called
respectively the argument and the value of
the function, such that whatever value be
assigned to the ** argument of the function
the “ value of the function” is definitely
(i.e. uniquely) determined. The converse
is not necessarily true, namely, that when
the wvalue of the function is determined
the argument is also uniquely determined.
Other functions of the argument z are y=a2,
y=222+432+1, y=a, y=Ilog x, y=sin &. The
last two functions of this group will be
readily recognizable by those who understand
a little algebra and trigonometry. It is not
worth while to delay now for their explana-

tion, as they are merely quoted for the sake
of example.

Up to this point, though we have defined
what we mean by a function in general, we
have only mentioned a series of special func-
tions. But mathematics, true to its general
methods of procedure, symbolizes the general
idea of any function. It does this by writing

it
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F(z), {(z), g(z), ¢ (z), ete., for any function of
z, where the argument z is placed in a bracket,
and some letter like F, /s & &, ete., is prefixed
to the bracket to stand for the function.
This notation has its defects. Thus it obvi-
ously clashes with the convention that the
single letters are to represent variable num-
bers ; since here F, f, g, ¢, ete., prefixed to a
bracket stand for variable functions. It
would be easy to give examples in which we
can only trust to common sense and the con-
text to see what is meant. One way of
evading the confusion is by using Greek
letters (e.g. ¢ as above) for functions: an-
other way is to keep to f and F (the initial
letter of function) for the functional letter,
and, if other variable functions have to be
symbolized, to take an adjacent letter like g.
With these explanations and cautions, we
write y =f(z), to denote that y is the value of
some undetermined function of the argument
¢ ; where f(z) may stand for anything such
as x+1, a2—2x2+1, sin a, log x, or merely for
@ 1tself. The essential point is that when @
1s given, then y is thereby definitely deter-
mined. It is important to be quite clear as
to the generality of this idea. Thus in y=
f(z), we may determine, if we chooae,_ f(z) to
mean that when z is an integer, f(z) is zero,
and when z has any other value, f(z) is 1.
Accordingly, putting y=/(z), with this choice
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for the meaning of /, y 1s either 0 or 1 accord-
ing as the value of @ is integral or otherwise.
Thus f(1)=0, f(2)=0, f(§)=1, [(4/2)=1, and
go on. This choice for the meaning of f(a)
gives a perfectly good function of the argu-
ment @ according to the general definition of
a function.

A function, which after all is only a sort
of correlation between two variables, is re-
presented like other correlations by a graph,
that is in effect by the methods of coordinate

geometry. For example, fig. 2 in Chapter II.

is the graph of the function :—, where v is the

argument and p the value of the function,
In this case the graph is only drawn for
positive values of v, which are the only values
possessing any meaning for the physical ap-
plication considered in that chapter. Again
in fig. 14 of Chapter IX. the whole length of
the line 4B, unlimited in both directions, is
the graph of the function #4-1, where z is the
argument and y is the value of the function ;
and in the same figure the unlimited line
A,B is the graph of the function 1—2, and
the line LOL’ is the graph of the function a,
@ being the argument and y the value of the

funetion,
expressed by

These functions, which are
simple algebraic formule, are adapted for re-

presentation by graphs. But for some fune-
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tions this representation would be very
misleading without a detailed explanation, or
might even be impossible. Thus, consider the
function mentioned above, which has the value
1 for all values of its argument @, except
those which are integral, e.g. except for 2= 0,
=1, =2, etc., when it has the value 0.
Its appearance on a graph would be that of
the straight line ABA’ drawn parallel to the

4
A FEr SR &S A
' s, Jo, e, e |
- | & - - .-
X By A& W X
g
y

Fig. 20.

axis XOX' at a distance from it of 1 unit of
length. But the points, B, (, Cy, Oy, Cy, ete.,
corresponding to the values 0, 1, 2, 8, 4, ete., of
the argument @, are to be omitted, and in-
stead of them the points O, B;, B>, B, q;, ete.,
on the axis OX, are to be taken. It 1s easy

to find functions for which the graphical re-
presentation is not only inconvenient but
impossible. Functions which do not lend
themselves to graphs are important in the
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higher mathematics, but we need not concern
ourselves further about them here.

The most important division between fune-
tions is that between continuous and discon-
tinuous functions. A function is continuous
when its value only alters gradually for
gradual alterations of the argument, and is
discontinuous when it can alter its value by
sudden jumps. Thus the two functions 241
and 1—a, whose graphs are depicted as
straight lines in fig. 14 of Chapter IX., are con-

: : o O
tinuous functions, and so is the function o

depicted in Chapter IIL., if we only think of
positive values of v. But the function de-
picted in fig. 20 of this chapter is discontinuous
since at the values =1, =2, ete., of its
argument, its value gives sudden jumps.

Let us think of some examples of functions
presented to us in nature, so as to get into
our heads the real bearing of continuity and
discontinuity. Consider a train in its journey
along a railway line, say from Euston Station,

the terminus in London of the London and
North-Western Railway. Along the line in
order lie the stations of Bletchley and Rugby.
Let ¢ be the number of hours which the trai
has been on its journey from Euston, and s be
the number of miles passed over. Then ¢ is
a function of ¢, i.e. is the variable value
corresponding to the variable argument ¢.
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If we know the circumstances of the train’s
run, we know s as soon as any special value
of ¢ is given. Now, miracles apart, we may
confidently assume that s is a continuous
function of ¢. It is impossible to allow for
the contingency that we can trace the train
continuously from KEuston to Bletchley, and
that then, without any intervening time, how-
ever short, it should appear at Rugby. The
idea is too fantastic to enter into our calcula-
tion : it contemplates possibilities not to be
found outside the Arabian Nights; and even
in those tales sheer discontinuity of motion
hardly enters into the imagination, they do
not dare to tax our credulity with anything
more than very unusual speed. But unusual
speed is no contradiction to the great law of
continuity of motion which appears to hold
in nature. Thus light moves at the rate of
about 190,000 miles per second and comes to
us from the sun in seven or eight minutes ;
but, in spite of this speed, its distance travelled
is always a continuous function of the time.
It is not quite so obvious to us that the
velocity of a body is invariably a continuous
function of the time. Consider the train at
any time #: it is moving with some definite
velocity, say v miles per hour, where v is
zero when the train is at rest in a station and
is negative when the train is backing. Now
we readily allow that v cannot change its
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value suddenly for a big, heavy train. The
train certainly cannot be running at forty
miles per hour from 11.45 a.m. up to noon,
and then suddenly, without any lapse of time,
commence running at 50 miles per hour. We
at once admit that the change of velocity
will be a gradual process. But how about
sudden blows of adequate magnitude ? Sup-
pose two trains collide; or, to take smaller
objects, suppose a man kicks a football. It
certainly appears to our sense as though the
football began suddenly to move. Thus, in
the case of velocity our senses do not revolt
at the idea of its being a discontinuous fune-
tion of the time, as they did at the idea of the
train being instantaneously transported from
Bletchley to Rugby. As a matter of fact,
if the laws of motion, with their conception
of mass, are true, there is no such thing as
discontinuous velocity in nature. Anything
that appears to our senses as discontinuous
change of velocity must, according to them,
be considered to be a case of gradual change
which is too quick to be perceptible to us.
It would be rash, however, to rush into the
generalization that no discontinuous functions
are presented to us in nature. A man who,
trusting that the mean height of the land
above sea-level between London and Paris
was a continuous function of the distance
from London, walked at night on Shakes-
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peare’s Cliff by Dover in contemplation of
the Milky Way, would be dead before he had
had time to rearrange his ideas as to the
necessity of caution in scientific conclusions.

It is very easy to find a discontinuous
function, even if we confine ourselves to the

| p,
&
- M, '
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Fig. 21. _
simplest of the algebraic formule. For ex-

ample, take the function y =-}. which we

have already considered in the form ’n;
where v was confined to positive values. But
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now let # have any value, positive or negative.
The graph of the function 1s exhibited in fig.
21. Suppose @ to change continuously from
a large negative value through a numerically
decreasing set of negative values up to 0, and
thence through the series of increasing posi-
tive values. Accordingly, if a moving point,
M, represents  on XOX’, M starts at the
extreme left of the axis XOX’ and succes-
sively moves through M,, M., M3, M, ete.
The corresponding points on the function are
Py, Py, P3, Py, ete. It is easy to see that
there is a point of discontinuity at =0, i.e.
at the origin O. For the value of the function
on the negative (left) side of the origin be-
comes endlessly great, but negative, and the
function reappears on the positive (right)
side as endlessly great but positive. Hence,
however small we take the length M,Ms,
there is a finite jump between the values of
the function at M, and M3. Indeed, this case
has the peculiarity that the smaller we take the
length between M, and M3, so long as they
enclose the origin, the bigger is the jump in
value of the function between them. This
graph brings out, what is also apparent in
fig. 20 of this chapter, that for many functions
the discontinuities only occur at isolated
points, so that by restricting the values of the
argument we obtain a continuous function for
these remaining values. Thus it is evident



wr 8 "“h.-._ g EEgRR e m b e R . 1--.-_--‘_- W* iy # ) .

PR A B g Bt e s

FUNCTIONS 155

, _ €3
from fig. 21 that in y = -, 1l we keep to positive

values only and exclude the origin, we obtain
a contimuous function. Similarly the same
function, if we keep to negative values only,
excluding the origin, is continuous. Again
the function which is graphed in fig. 20 is con-
tinuous between B and C;, and between Cy
and C3, and between (5 and (3, and so on,
always in each case excluding the end points.
It 1s, however, easy to find functions such that
their discontinuities occur at all points. For
example, consider a function f(ag, such that
when @ is any fractional number f(z)=1, and
when @« is any incommensurable number
f(z)=2. This function is discontinuous at all
points.

Finally, we will look a little more closely
at the definition of continuity given above.
We have said that a function is continuous
when its value only alters gradually for
gradual alterations of the argument, and is
discontinuous when it can alter its value by
sudden jumps. This is exactly the sort of
definition which satisfied our mathematical
forefathers and no longer satisfies modern

mathematicians. It is worth while to spend
some time over it; for when we understand

the modern objections to it, we shall have
gone a long way towards the understanding
of the spirit of modern mathematies. The
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whole difference between the older and the
newer mathematics lies in the fact that vague
half-metaphorical terms like ‘° gradually ™
are no longer tolerated in its exact statements.
Modern mathematics will only admit state-
ments and definitions and arguments which
exclusively employ the few simple ideas about
number and magnitude and variables on
which the science is founded. Of two num-
bers one can be greater or less than the
other : and one can be such and such a multi-
ple of the other; but there is no relation of
‘* graduality ”’ between two numbers, and
hence the term is inadmissible. Now this
may seem at first sight to be great pedantry.
To this charge there are two answers. In
the first place, during the first half of the
nineteenth century it was found by some
great mathematicians, especially Abel in
Sweden, and Weierstrass in Germany, that
large parts of mathematics as enunciated in
the old happy-go-lucky manner were simply
wrong. Macaulay in his essay on Bacon
contrasts the certainty of mathematics with
the uncertainty of philosophy; and by way
of a rhetorical example he says, ‘“ There has
been no reaction against Taylor’s theorem.”
He could not have chosen a worse example.
For, without having made an examination of
English text-books on mathematics contem-
porary with the publication of this essay, the
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assumption is a fairly safe one that Taylor’s
theorem was enunciated and proved wrongly
in every one of them. Accordingly, the
anxious precision of modern mathematics is
necessary for accuracy. In the second place
it 1s necessary for research. It makes for
clearness of thought, and thence for boldness
of thought and for fertility in trying new
combinations of ideas. When the initial
statements are vague and slipshod, at every
subsequent stage of thought common sense
has to step in to limit applications and to
explain meanings. Now in creative thought
common sense 1S a bad master. Its sole
criterion for judgment is that the new ideas
shall look like the old ones. In other words
it can only act by suppressing originality.
In working our way towards the precise
definition of continuity (as applied to fune-
tions) let us consider more closely the state-
ment that there is no relation of ¢ graduality ”
between numbers. It may be asked, Cannot
one number be only slightly greater than
another number, or in other words, cannot
the difference between the two numbers be
small ? The whole point is that in the ab-
stract, apart from some arbitrarily assumed
application, there is no such thing as a mt
or a small number. A million miles is a
small number of miles for an astronomer
investigating the fixed stars, but a million
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pounds is a large yearly income. Again, one-
quarter is a large fraction of one’s income to
give away in charity, but is a small fraction
of it to retain for private use. KExamples can
be accumulated indefinitely to show that
great or small in any absolute sense have no
abstract application to numbers. We can
say of two numbers that one is greater or
smaller than another, but not without speci-
fication of particular circumstances that any
one number is great or small. Our task
therefore is to define continuity without any
mention of a ** small > or *‘ gradual ’ change
in value of the function.

In order to do this we will give names to
some 1deas, which will also be useful when
we come to consider limits and the differential
calculus.

An " interval ” of values of the argument
z of a function f(z) is all the values lying
between some two values of the argument.
For example, the interval between =1 and
=2 consists of all the values which # can
take lying between 1 and 2, i.e. it consists of
all the real numbers between 1 and 2. But
the bounding numbers of an interval need
not be integers. An interval of values of the

argument contains a number a, when a is a
member of the interval. For example, the

interval between 1 and 2 contains 2, §, Z, and
SO on,
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A set of numbers approximates to a num-
ber a within a standard k, when the numerical
difference between a and every number of the
set 1s less than k. Here k is the * standard
of approximation.” Thus the set of num-
bers 3, 4, 6, 8, approximates to the number
5 within the standard 4. In this case the
standard 4 is not the smallest which could
have been chosen, the set also approximates
to 5 within any of the standards 31 or 301
or 8'001. Again, the numbers, 31, 3-141,
314135, 314159 approximate to 313102 with-
in the standard ‘032, and also within the
smaller standard -031083.

These two ideas of an interval and of
approximation to a number within a standard
are easy enough ; their only difficulty is that
they look rather trivial. But when combined
with the next idea, that of the ‘‘ neighbour-
hood ”’ of a number, they form the foundation
of modern mathematical reasoning. What
do we mean by saying that something is true

for a function f(z) in the neighbourhood of
the value a of the argument #? It is this

fundamental notion which we have now got to
make precise.

The values of a function f(z) are said to
possess a characteristic in the ** neighbour-
hood of a > when some interval can be found,
which (i) contains the number a not as an
end-point, and (ii) is such that every value
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of the function for arguments, other than a,
lying within that interval possesses the char-
acteristic. The value f(a) of the function for
the argument a may or may not possess the
characteristic. Nothing i1s decided on this
point by statements about the neighbourhood
of a.

For example, suppose we take the particu-
lar function #2. Now in the neighbourhood of
2. the values of 22 are less than 5. For we can
find an interval, e.g. from 1 to 21, which
(1) contains 2 not as an end-point, and (11) 1s
such that, for values of z lying within it, a2
is less than 5.

Now, combining the preceding ideas we
know what is meant by saying that in the
neighbourhood of a the function f(z) approxi-
mates to ¢ within the standard k. It means
that some interval can be found which (i)
includes anot as an end-point, and (i1) is such
that all values of f(z), where x lies in the inter-
val and is nota,differ frome by less than k. For
example, in the neighbourhood of 2, the func-

tion 4/2 approximates to 1'41425 within the
standard -0001. This is true because the
square root of 1'99996164 is 14142 and the
square root of 2:00024449 is 14143 ; hence
for values of # lying in the interval
199996164 to 2:00024449, which contains 2
not as an end-point, the values of the function

+/z all lie between 1'4142 and 1:4148, and
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they therefore all differ from 141425 by less
than *0001. In this case we can, if we like
lix a smaller standard of approximation,
namely *000051 or ‘0000501 Again, to take
another example, in the neighbourhood of 2
the function 22 approximates to 4 within the
standard *5. For (1'9)2=38'61 and (21)2=
441, and thus the required interval 10 to
2'1, containing 2 not as an end-point, has
been found. This example brings out the
fact that statements about a function f(z) in
the neighbourhood of a number ¢ are distinct
from statements about the value of f(2) when
«=a. The production of an interval, through-
out which the statement is true, is required.
Thus the mere fact that 22—=4 does not by
itself justify us in saying that in the neigh-
bourhood of 2 the function 22 is equal to 4.
This statement would be untrue, because no
Interval can be produced with the required
property. Also, the fact that 22—=4 does not
by itself justify us in saying that in the
neighbourhood of 2 the function 22 approxi-
mates to 4 within the standard *5 : although
as a matter of fact, the statement has just
been proved to be true.

If we understand the preceding ideas, we
understand the foundations of modern
mathematics. We shall recur to analogous

ideas in the chapter on Series, and again
in the chapter on the Differential Calculus.

F
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Meanwhile, we are now prepared to define
“ sontinuous functions.” A function [f(z)
is *‘ continuous”’ at a value a ol its argu-
ment, when in the neighbourhood of a
its values approximate to f(a) (i.e. to its
value at a) within every standard of ap-
proximation.

This means that, whatever standard k be
chosen, in the neighbourhood of a f(z) ap-
proximates to f(a) within the standard £.
For example, 22 is continuous at the value 2
of its argument, @, because however k be
chosen we can always find an interval, which
(i) contains 2 not as an end-point, and (i1) 1s
such that the values of z2-for arguments lying
within it approximate to 4 (i.e. 22) within
the standard k. Thus, suppose we choose
the standard ‘1; now (1:999)2=38'996001,
and (2'01)2=4'0401, and both these numbers
differ from 4 by less than ‘1. Hence, within
the interval 1'999 to 201 the values of z?2
approximate to 4 within the standard ‘1.
Similarly an interval can be produced for any
other standard which we like to try.

Take the example of the railway train. Its
velocity is continuous as it passes the signal
box, if whatever velocity you like to assign
(say one-millionth of a mile per hour) an in-
terval of time can be found extending before
and after the instant of passing, such that at
all instants within it the train’s velocity




FUNCTIONS « 368

differs from that with which the train passed
the box by less than one-millionth of a mile
per hour; and the same is true whatever
other velocity be mentioned in the place of
one-millionth of a mile per hour.




CHAPTER XII1

PERIODICITY IN NATURE

Tae whole life of Nature is dominated by
the existence of periodic events, that is, by
the existence of successive events so analogous
to each other that, without any straining of
language, they may be termed recurrences of
the same event. The rotation of the earth
produces the successive days. It is true that
each day is different from the preceding days,
however abstractly we define the meaning of
a day, so as to exclude casual phenomena.
But with a sufficiently abstract definition of
a day, the distinction in properties between
two days becomes faint and remote from
practical interest; and each day may then
be conceived as a recurrence of the phenome-
non of one rotation of the earth. Again the
path of the earth round the sun leads to the
yearly recurrence of the seasons, and imposes
another periodicity on all the operations of
nature. Another less fundamental perio-
dicity is provided by the phases of the moon.
In modern civilized life, with its artificial light,
these phases are of slight importance, but in
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ancient times, in climates where the days are
burning and the skies clear, human life was
apparently largelyinfluencedbythe existenceof
moonlight.  Accordingly our divisions into
weeks and months, with their religious associa-
tions, have spreadover the European racesfrom
Syria and Mesopotamia, though independent
observances following the moon’s phases are
found amongst most nations. It is, however,
through the tides, and not through its phases
of light and darkness, that the moon’s perio-
dicity has chiefly influenced the history of
the earth.

Our bodily life is essentially periodic.
It is dominated by the beatings of the
heart, and the recurrence of breathing.
The presupposition of periodicity is indeed
fundamental to our very conception of life.
We cannot imagine a course of nature in
which, as events progressed, we should be
unable to say : “‘ This has happened before.”

The whole conception of experience as a guide
to conduct would be absent. Men would

always find themselves in new situations
possessing no substratum of identity with
anything in past history. The very means of

measuring time as a quantity would be absent.

Events might still be recognized as occurring
in a series, so that some were earlier and
others later. But we now go beyond this

bare recognition. We can not only say that
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three events, 4, B, C, occurred in this order,
so that 4 came before B, and B belore C;
but also we can say that the length of time
between the occurrences of 4 and B was
twice as long as that between Band C. Now,
quantity of time is essentially dependent on
observing the number of natural recurrences
which have intervened. We may say
that the length of time between 4 and B was
so many days, or so many months, or so
many years, according to the type of recur-
rence to which we wish to appeal. Indeed,
at the beginning of civilization, these three
modes of measuring time were really distinct.
It has been one of the first tasks of science
among civilized or semi-civilized nations, to
fuse them into one coherent measure. The
full extent of this task must be grasped. It
is necessary to determine, not merely what
number of days (e.g. 36525 . . .) go to some
one year, but also previously to determine that
the same number of days do go to the suc-
cessive years. We can imagine a world Iin
which periodicities exist, but such that no two
are coherent. In some years there might be
200 days and in others 850. The determina-
tion of the broad general consistency of the
more important periodicities was the first step
in natural science. This consistency arises
from no abstract intuitive law of thought ;
it is merely an observed fact of nature
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guaranteed by experience. Indeed, so far is
it from being a necessary law, that it is not
even exactly true There are divergencies in
every case. For some instances these diver-
gencies are easily observed and are therefore
immediately apparent. In other cases it re-
quires the most refined observations and
astronomical accuracy to make them appar-
ent. Broadly speaking, all recurrences de-
pending on living beings, such as the beatings
of the heart, are subject in comparison with
other recurrences to rapid variations. The
great stable obvious recurrences—stable in
the sense of mutually agreeing with great
accuracy—are those depending on the motion
of the earth as a whole, and on similar motions
of the heavenly bodies.

We therefore assume that these astronomi-
cal recurrences mark out equal intervals of
time. But how are we to deal with their
discrepancies which the refined observations
of astronomy detect? Apparently we are
reduced to the arbitrary assumption that one
or other of these sets of phenomena marks out
equal times—e.g. that either all days are of
equal length, or that all years are of equal
length., This is not so: some assumptions
must be made, but the assumption which
underlies the whole procedure of the astrono-
mers in determining the measure of time is
that the laws of motion are exactly verified.
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Before explaining how this is done, it 1s in-
teresting to observe that this relegation of
the determination of the measure of time to
the astronomers arises (as has been said) from
the stable consistency of the recurrences with
which they deal. If such a superior con-
sistency had been noted among the recur-
rences characteristic of the human body, we
should naturally have looked to the doctors
of medicine for the regulation of our clocks.
In considering how the laws of motion
come into the matter, note that two incon-
sistent modes of measuring time will yield
different variations of velocity to the same
body. For example, suppose we define an
hour as one twenty-fourth of a day, and take
the case of a train running uniformly for two
hours at the rate of twenty miles per hour.
Now take a grossly inconsistent measure of
time, and suppose that it makes the first hour
to be twiceas long asthe second hour. Then,
according to this other measure of duration,
the time of the train’s run is divided into
two parts, during each of which it has tra-
versed the same distance, namely, twenty
miles ; but the duration of the first part is
twice as long as that of the second part.
Hence the velocity of the train has not been
uniform, and on the average the velocity
during the second period is twice that during
the first period. Thus the question as to




